提交 7a4b2b1f 编写于 作者: littletomatodonkey's avatar littletomatodonkey

fix layer helper

上级 32dc1c1c
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import MSRA
from paddle.fluid.contrib.model_stat import summary
__all__ = ["GhostNet", "GhostNetV1"]
class GhostNet():
def __init__(self, width_mult):
cfgs = [
# k, t, c, SE, s
[3, 16, 16, 0, 1],
[3, 48, 24, 0, 2],
[3, 72, 24, 0, 1],
[5, 72, 40, 1, 2],
[5, 120, 40, 1, 1],
[3, 240, 80, 0, 2],
[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 1, 1],
[3, 672, 112, 1, 1],
[5, 672, 160, 1, 2],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1]
]
self.cfgs = cfgs
self.width_mult = width_mult
def _make_divisible(self, v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
data_format="NCHW"):
print("conv bn, num_filters: {}, filter_size: {}, stride: {}".format(
num_filters, filter_size, stride))
x = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(
initializer=fluid.initializer.MSRA(), name=name + "_weights"),
bias_attr=False,
name=name + "_conv_op",
data_format=data_format)
x = fluid.layers.batch_norm(
input=x,
act=act,
name=name + "_bn",
param_attr=ParamAttr(name=name + "_bn_scale"),
bias_attr=ParamAttr(name=name + "_bn_offset"),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance",
data_layout=data_format)
return x
def SElayer(self, input, num_channels, reduction_ratio=4, name=None):
pool = fluid.layers.pool2d(
input=input, pool_size=0, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
squeeze = fluid.layers.fc(
input=pool,
size=num_channels // reduction_ratio,
act='relu',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_sqz_weights'),
bias_attr=ParamAttr(name=name + '_sqz_offset'))
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
excitation = fluid.layers.fc(
input=squeeze,
size=num_channels,
act=None,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_exc_weights'),
bias_attr=ParamAttr(name=name + '_exc_offset'))
excitation = fluid.layers.clip(
x=excitation, min=0, max=1, name=name + '_clip')
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return scale
def depthwise_conv(self,
inp,
oup,
kernel_size,
stride=1,
relu=False,
name=None,
data_format="NCHW"):
return self.conv_bn_layer(
input=inp,
num_filters=oup,
filter_size=kernel_size,
stride=stride,
groups=inp.shape[1] if data_format == "NCHW" else inp.shape[-1],
act="relu" if relu else None,
name=name + "_dw",
data_format=data_format)
def GhostModule(self,
inp,
oup,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
relu=True,
name=None,
data_format="NCHW"):
self.oup = oup
init_channels = math.ceil(oup / ratio)
new_channels = init_channels * (ratio - 1)
primary_conv = self.conv_bn_layer(
input=inp,
num_filters=init_channels,
filter_size=kernel_size,
stride=stride,
groups=1,
act="relu" if relu else None,
name=name + "_primary_conv",
data_format="NCHW")
cheap_operation = self.conv_bn_layer(
input=primary_conv,
num_filters=new_channels,
filter_size=dw_size,
stride=1,
groups=init_channels,
act="relu" if relu else None,
name=name + "_cheap_operation",
data_format=data_format)
out = fluid.layers.concat(
[primary_conv, cheap_operation], axis=1, name=name + "_concat")
return out[:, :self.oup, :, :]
def GhostBottleneck(self,
inp,
hidden_dim,
oup,
kernel_size,
stride,
use_se,
name=None,
data_format="NCHW"):
inp_channels = inp.shape[1]
x = self.GhostModule(
inp=inp,
oup=hidden_dim,
kernel_size=1,
stride=1,
relu=True,
name=name + "GhostBottle_1",
data_format="NCHW")
if stride == 2:
x = self.depthwise_conv(
inp=x,
oup=hidden_dim,
kernel_size=kernel_size,
stride=stride,
relu=False,
name=name + "_dw2",
data_format="NCHW")
if use_se:
x = self.SElayer(
input=x, num_channels=hidden_dim, name=name + "SElayer")
x = self.GhostModule(
inp=x,
oup=oup,
kernel_size=1,
relu=False,
name=name + "GhostModule_2")
if stride == 1 and inp_channels == oup:
shortcut = inp
else:
shortcut = self.depthwise_conv(
inp=inp,
oup=inp_channels,
kernel_size=kernel_size,
stride=stride,
relu=False,
name=name + "shortcut_depthwise_conv",
data_format="NCHW")
shortcut = self.conv_bn_layer(
input=shortcut,
num_filters=oup,
filter_size=1,
stride=1,
groups=1,
act=None,
name=name + "shortcut_conv_bn",
data_format="NCHW")
return fluid.layers.elementwise_add(
x=x, y=shortcut, axis=-1, act=None, name=name + "elementwise_add")
def net(self, input, class_dim=1000):
# build first layer:
output_channel = self._make_divisible(16 * self.width_mult, 4)
x = self.conv_bn_layer(
input=input,
num_filters=output_channel,
filter_size=3,
stride=2,
groups=1,
act="relu",
name="firstlayer",
data_format="NCHW")
input_channel = output_channel
# build inverted residual blocks
idx = 0
for k, exp_size, c, use_se, s in self.cfgs:
output_channel = self._make_divisible(c * self.width_mult, 4)
hidden_channel = self._make_divisible(exp_size * self.width_mult,
4)
x = self.GhostBottleneck(
inp=x,
hidden_dim=hidden_channel,
oup=output_channel,
kernel_size=k,
stride=s,
use_se=use_se,
name="GhostBottle_" + str(idx),
data_format="NCHW")
input_channel = output_channel
idx += 1
# build last several layers
output_channel = self._make_divisible(exp_size * self.width_mult, 4)
x = self.conv_bn_layer(
input=x,
num_filters=output_channel,
filter_size=1,
stride=1,
groups=1,
act="relu",
name="lastlayer",
data_format="NCHW")
x = fluid.layers.pool2d(
input=x, pool_type='avg', global_pooling=True, data_format="NCHW")
input_channel = output_channel
output_channel = 1280
stdv = 1.0 / math.sqrt(x.shape[1] * 1.0)
out = fluid.layers.conv2d(
input=x,
num_filters=output_channel,
filter_size=1,
groups=1,
param_attr=ParamAttr(
name="fc_0_w",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=False,
name="fc_0")
out = fluid.layers.batch_norm(
input=out,
act="relu",
name="fc_0_bn",
param_attr=ParamAttr(name="fc_0_bn_scale"),
bias_attr=ParamAttr(name="fc_0_bn_offset"),
moving_mean_name="fc_0_bn_mean",
moving_variance_name="fc_0_bn_variance",
data_layout="NCHW")
out = fluid.layers.dropout(x=out, dropout_prob=0.2)
stdv = 1.0 / math.sqrt(out.shape[1] * 1.0)
out = fluid.layers.fc(
input=out,
size=class_dim,
param_attr=ParamAttr(
name="fc_1_w",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_1_bias"))
return out
def GhostNet_0_5():
model = GhostNet(width_mult=0.5)
return model
def GhostNet_1_0():
model = GhostNet(width_mult=1.0)
return model
def GhostNet_1_3():
model = GhostNet(width_mult=1.3)
return model
if __name__ == "__main__":
# from calc_flops import summary
image = fluid.data(name='image', shape=[-1, 3, 224, 224], dtype='float32')
model = GhostNet_1_3()
out = model.net(input=image, class_dim=1000)
test_program = fluid.default_main_program().clone(for_test=True)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
total_flops_params, is_quantize = summary(test_program)
......@@ -24,9 +24,11 @@ from .se_resnext_vd import SE_ResNeXt50_vd_32x4d, SE_ResNeXt50_vd_32x4d, SENet15
from .dpn import DPN68
from .densenet import DenseNet121
from .hrnet import HRNet_W18_C
from .efficientnet import EfficientNetB0
from .googlenet import GoogLeNet
from .mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1
from .mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0
from .mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
from .shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish
from .distillation_models import ResNet50_vd_distill_MobileNetV3_large_x1_0
\ No newline at end of file
from .distillation_models import ResNet50_vd_distill_MobileNetV3_large_x1_0
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......
......@@ -21,7 +21,6 @@ import sys
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
import math
......
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
import collections
......@@ -491,6 +490,7 @@ class SEBlock(fluid.dygraph.Layer):
num_squeezed_channels,
oup,
1,
act="sigmoid",
use_bias=True,
padding_type=padding_type,
name=name + "_se_expand")
......@@ -499,8 +499,6 @@ class SEBlock(fluid.dygraph.Layer):
x = self._pool(inputs)
x = self._conv1(x)
x = self._conv2(x)
layer_helper = LayerHelper(self.full_name(), act='sigmoid')
x = layer_helper.append_activation(x)
return fluid.layers.elementwise_mul(inputs, x)
......@@ -565,18 +563,17 @@ class MbConvBlock(fluid.dygraph.Layer):
def forward(self, inputs):
x = inputs
layer_helper = LayerHelper(self.full_name(), act='swish')
if self.expand_ratio != 1:
x = self._ecn(x)
x = layer_helper.append_activation(x)
x = fluid.layers.swish(x)
x = self._dcn(x)
x = layer_helper.append_activation(x)
x = fluid.layers.swish(x)
if self.has_se:
x = self._se(x)
x = self._pcn(x)
if self.id_skip and \
self.block_args.stride == 1 and \
self.block_args.input_filters == self.block_args.output_filters:
self.block_args.stride == 1 and \
self.block_args.input_filters == self.block_args.output_filters:
if self.drop_connect_rate:
x = _drop_connect(x, self.drop_connect_rate, self.is_test)
x = fluid.layers.elementwise_add(x, inputs)
......@@ -697,8 +694,7 @@ class ExtractFeatures(fluid.dygraph.Layer):
def forward(self, inputs):
x = self._conv_stem(inputs)
layer_helper = LayerHelper(self.full_name(), act='swish')
x = layer_helper.append_activation(x)
x = fluid.layers.swish(x)
for _mc_block in self.conv_seq:
x = _mc_block(x)
return x
......@@ -914,4 +910,4 @@ def EfficientNetB7(is_test=False,
override_params=override_params,
use_se=use_se,
**args)
return model
\ No newline at end of file
return model
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
import math
__all__ = ['GoogLeNet_DY']
__all__ = ['GoogLeNet']
def xavier(channels, filter_size, name):
stdv = (3.0 / (filter_size**2 * channels))**0.5
param_attr = ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + "_weights")
return param_attr
......@@ -90,8 +89,8 @@ class Inception(fluid.dygraph.Layer):
convprj = self._convprj(pool)
cat = fluid.layers.concat([conv1, conv3, conv5, convprj], axis=1)
layer_helper = LayerHelper(self.full_name(), act="relu")
return layer_helper.append_activation(cat)
cat = fluid.layers.relu(cat)
return cat
class GoogleNetDY(fluid.dygraph.Layer):
......@@ -205,4 +204,4 @@ class GoogleNetDY(fluid.dygraph.Layer):
def GoogLeNet(**args):
model = GoogleNetDY(**args)
return model
\ No newline at end of file
return model
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
import math
......@@ -495,8 +494,7 @@ class FuseLayers(fluid.dygraph.Layer):
residual = fluid.layers.elementwise_add(
x=residual, y=y, act=None)
layer_helper = LayerHelper(self.full_name(), act='relu')
residual = layer_helper.append_activation(residual)
residual = fluid.layers.relu(residual)
outs.append(residual)
return outs
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.initializer import MSRA
import math
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......@@ -143,9 +142,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
return y
class Res2Net(fluid.dygraph.Layer):
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......@@ -47,7 +46,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
self.is_vd_mode = is_vd_mode
self._pool2d_avg = Pool2D(
pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg', ceil_mode=True)
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
......@@ -150,9 +153,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
return y
class Res2Net_vd(fluid.dygraph.Layer):
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......@@ -118,10 +117,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act="relu")
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv2, act="relu")
return y
class BasicBlock(fluid.dygraph.Layer):
......@@ -165,10 +162,8 @@ class BasicBlock(fluid.dygraph.Layer):
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv1)
layer_helper = LayerHelper(self.full_name(), act="relu")
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv1, act="relu")
return y
class ResNet(fluid.dygraph.Layer):
......
import numpy as np
import argparse
import ast
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
import math
import sys
import time
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name+"_branch2a")
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name+"_branch2b")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name+"_branch2c")
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride,
name=name + "_branch1")
self.shortcut = shortcut
self._num_channels_out = num_filters * 4
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
class ResNet(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=1000):
super(ResNet, self).__init__()
self.layers = layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [64, 128, 256, 512]
self.conv = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="conv1")
self.pool2d_max = Pool2D(
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
self.bottleneck_block_list = []
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name="res"+str(block+2)+"a"
else:
conv_name="res"+str(block+2)+"b"+str(i)
else:
conv_name="res"+str(block+2)+chr(97+i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
name=conv_name))
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 4 * 1 * 1
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.out = Linear(self.pool2d_avg_output,
class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv), name="fc_0.w_0"),
bias_attr=ParamAttr(name="fc_0.b_0"))
def forward(self, inputs):
y = self.conv(inputs)
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
y = self.out(y)
return y
def ResNet50(**args):
model = ResNet(layers=50, **args)
return model
def ResNet101(**args):
model = ResNet(layers=101, **args)
return model
def ResNet152(**args):
model = ResNet(layers=152, **args)
return model
if __name__ == "__main__":
import numpy as np
place = fluid.CPUPlace()
with fluid.dygraph.guard(place):
model = ResNet50()
img = np.random.uniform(0, 255, [1, 3, 224, 224]).astype('float32')
img = fluid.dygraph.to_variable(img)
res = model(img)
print(res.shape)
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......@@ -120,10 +119,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
return y
class BasicBlock(fluid.dygraph.Layer):
......@@ -167,10 +164,8 @@ class BasicBlock(fluid.dygraph.Layer):
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv1)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
return y
class ResNet_vc(fluid.dygraph.Layer):
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......@@ -130,10 +129,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
return y
class BasicBlock(fluid.dygraph.Layer):
......@@ -179,10 +176,8 @@ class BasicBlock(fluid.dygraph.Layer):
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv1)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
return y
class ResNet_vd(fluid.dygraph.Layer):
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......@@ -122,10 +121,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
return y
class ResNeXt(fluid.dygraph.Layer):
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......@@ -46,7 +45,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
self.is_vd_mode = is_vd_mode
self._pool2d_avg = Pool2D(
pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg', ceil_mode=True)
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
......@@ -131,10 +134,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
return y
class ResNeXt(fluid.dygraph.Layer):
......
......@@ -19,7 +19,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......@@ -137,10 +136,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=scale)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
return y
class BasicBlock(fluid.dygraph.Layer):
......@@ -194,10 +191,8 @@ class BasicBlock(fluid.dygraph.Layer):
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=scale)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
return y
class SELayer(fluid.dygraph.Layer):
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
......@@ -131,10 +130,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=scale)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
return y
class SELayer(fluid.dygraph.Layer):
......
......@@ -20,7 +20,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.initializer import MSRA
import math
......
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
import math
......@@ -99,11 +98,10 @@ class EntryFlowBottleneckBlock(fluid.dygraph.Layer):
def forward(self, inputs):
conv0 = inputs
short = self._short(inputs)
layer_helper = LayerHelper(self.full_name(), act="relu")
if self.relu_first:
conv0 = layer_helper.append_activation(conv0)
conv0 = fluid.layers.relu(conv0)
conv1 = self._conv1(conv0)
conv2 = layer_helper.append_activation(conv1)
conv2 = fluid.layers.relu(conv1)
conv2 = self._conv2(conv2)
pool = self._pool(conv2)
return fluid.layers.elementwise_add(x=short, y=pool)
......@@ -177,12 +175,11 @@ class MiddleFlowBottleneckBlock(fluid.dygraph.Layer):
name=name + "_branch2c_weights")
def forward(self, inputs):
layer_helper = LayerHelper(self.full_name(), act="relu")
conv0 = layer_helper.append_activation(inputs)
conv0 = fluid.layers.relu(inputs)
conv0 = self._conv_0(conv0)
conv1 = layer_helper.append_activation(conv0)
conv1 = fluid.layers.relu(conv0)
conv1 = self._conv_1(conv1)
conv2 = layer_helper.append_activation(conv1)
conv2 = fluid.layers.relu(conv1)
conv2 = self._conv_2(conv2)
return fluid.layers.elementwise_add(x=inputs, y=conv2)
......@@ -276,10 +273,9 @@ class ExitFlowBottleneckBlock(fluid.dygraph.Layer):
def forward(self, inputs):
short = self._short(inputs)
layer_helper = LayerHelper(self.full_name(), act="relu")
conv0 = layer_helper.append_activation(inputs)
conv0 = fluid.layers.relu(inputs)
conv1 = self._conv_1(conv0)
conv2 = layer_helper.append_activation(conv1)
conv2 = fluid.layers.relu(conv1)
conv2 = self._conv_2(conv2)
pool = self._pool(conv2)
return fluid.layers.elementwise_add(x=short, y=pool)
......@@ -306,12 +302,11 @@ class ExitFlow(fluid.dygraph.Layer):
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, inputs):
layer_helper = LayerHelper(self.full_name(), act="relu")
conv0 = self._conv_0(inputs)
conv1 = self._conv_1(conv0)
conv1 = layer_helper.append_activation(conv1)
conv1 = fluid.layers.relu(conv1)
conv2 = self._conv_2(conv1)
conv2 = layer_helper.append_activation(conv2)
conv2 = fluid.layers.relu(conv2)
pool = self._pool(conv2)
pool = fluid.layers.reshape(pool, [0, -1])
out = self._out(pool)
......
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
__all__ = ["Xception41_deeplab", "Xception65_deeplab", "Xception71_deeplab"]
......@@ -226,13 +225,12 @@ class Xception_Block(fluid.dygraph.Layer):
name=name + "/shortcut")
def forward(self, inputs):
layer_helper = LayerHelper(self.full_name(), act='relu')
if not self.activation_fn_in_separable_conv:
x = layer_helper.append_activation(inputs)
x = fluid.layers.relu(inputs)
x = self._conv1(x)
x = layer_helper.append_activation(x)
x = fluid.layers.relu(x)
x = self._conv2(x)
x = layer_helper.append_activation(x)
x = fluid.layers.relu(x)
x = self._conv3(x)
else:
x = self._conv1(inputs)
......
......@@ -5,5 +5,5 @@ export PYTHONPATH=$PWD:$PYTHONPATH
python -m paddle.distributed.launch \
--selected_gpus="0,1,2,3" \
tools/train.py \
-c ./configs/ResNet/ResNet50_vd.yaml \
-c ./configs/ResNet/ResNet50.yaml \
-o print_interval=10
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册