efficientnet.py 28.7 KB
Newer Older
1 2 3 4 5 6
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
W
WuHaobo 已提交
7 8 9 10 11
import collections
import re
import copy

__all__ = [
12 13 14
    'EfficientNet', 'EfficientNetB0_small', 'EfficientNetB0', 'EfficientNetB1',
    'EfficientNetB2', 'EfficientNetB3', 'EfficientNetB4', 'EfficientNetB5',
    'EfficientNetB6', 'EfficientNetB7'
W
WuHaobo 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
]

GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum',
    'batch_norm_epsilon',
    'dropout_rate',
    'num_classes',
    'width_coefficient',
    'depth_coefficient',
    'depth_divisor',
    'min_depth',
    'drop_connect_rate',
])

BlockArgs = collections.namedtuple('BlockArgs', [
    'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
    'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])

GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)


def efficientnet_params(model_name):
    """ Map EfficientNet model name to parameter coefficients. """
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None,
                 depth_coefficient=None,
                 dropout_rate=0.2,
                 drop_connect_rate=0.2):
    """ Get block arguments according to parameter and coefficients. """
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        num_classes=1000,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None)

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """ Get the block args and global params for a given model """
    if model_name.startswith('efficientnet'):
        w, d, _, p = efficientnet_params(model_name)
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p)
    else:
        raise NotImplementedError('model name is not pre-defined: %s' %
                                  model_name)
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


def round_filters(filters, global_params):
    """ Calculate and round number of filters based on depth multiplier. """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth,
                      int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """ Round number of filters based on depth multiplier. """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


class BlockDecoder(object):
littletomatodonkey's avatar
littletomatodonkey 已提交
123 124 125
    """
    Block Decoder, straight from the official TensorFlow repository.
    """
W
WuHaobo 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    @staticmethod
    def _decode_block_string(block_string):
        """ Gets a block through a string notation of arguments. """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
littletomatodonkey's avatar
littletomatodonkey 已提交
141
        cond_1 = ('s' in options and len(options['s']) == 1)
S
shippingwang 已提交
142 143
        cond_2 = ((len(options['s']) == 2) and
                  (options['s'][0] == options['s'][1]))
littletomatodonkey's avatar
littletomatodonkey 已提交
144
        assert (cond_1 or cond_2)
W
WuHaobo 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

        return BlockArgs(
            kernel_size=int(options['k']),
            num_repeat=int(options['r']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            expand_ratio=int(options['e']),
            id_skip=('noskip' not in block_string),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=[int(options['s'][0])])

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
            'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
            (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
            'i%d' % block.input_filters, 'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """
littletomatodonkey's avatar
littletomatodonkey 已提交
173
        Decode a list of string notations to specify blocks in the network.
W
WuHaobo 已提交
174

littletomatodonkey's avatar
littletomatodonkey 已提交
175 176 177
        string_list: list of strings, each string is a notation of block
        return
            list of BlockArgs namedtuples of block args
W
WuHaobo 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """
        Encodes a list of BlockArgs to a list of strings.

        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
def initial_type(name, use_bias=False):
    param_attr = ParamAttr(name=name + "_weights")
    if use_bias:
        bias_attr = ParamAttr(name=name + "_offset")
    else:
        bias_attr = False
    return param_attr, bias_attr


def init_batch_norm_layer(name="batch_norm"):
    param_attr = ParamAttr(name=name + "_scale")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def init_fc_layer(name="fc"):
    param_attr = ParamAttr(name=name + "_weights")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


inp_shape = {
    "b0_small": [224, 112, 112, 56, 28, 14, 14, 7],
    "b0": [224, 112, 112, 56, 28, 14, 14, 7],
    "b1": [240, 120, 120, 60, 30, 15, 15, 8],
    "b2": [260, 130, 130, 65, 33, 17, 17, 9],
    "b3": [300, 150, 150, 75, 38, 19, 19, 10],
    "b4": [380, 190, 190, 95, 48, 24, 24, 12],
    "b5": [456, 228, 228, 114, 57, 29, 29, 15],
    "b6": [528, 264, 264, 132, 66, 33, 33, 17],
    "b7": [600, 300, 300, 150, 75, 38, 38, 19]
}


def _drop_connect(inputs, prob, is_test):
    if is_test:
        return inputs
    keep_prob = 1.0 - prob
    inputs_shape = fluid.layers.shape(inputs)
    random_tensor = keep_prob + fluid.layers.uniform_random(
        shape=[inputs_shape[0], 1, 1, 1], min=0., max=1.)
    binary_tensor = fluid.layers.floor(random_tensor)
    output = inputs / keep_prob * binary_tensor
    return output


W
fix  
wqz960 已提交
254
class Conv2ds(fluid.dygraph.Layer):
255 256 257 258 259 260 261 262 263 264 265 266 267
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=None,
                 name="conv2d",
                 act=None,
                 use_bias=False,
                 padding_type=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
268
        super(Conv2ds, self).__init__()
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

        param_attr, bias_attr = initial_type(name=name, use_bias=use_bias)

        def get_padding(filter_size, stride=1, dilation=1):
            padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
            return padding

        inps = 1 if model_name == None and cur_stage == None else inp_shape[
            model_name][cur_stage]
        self.need_crop = False
        if padding_type == "SAME":
            top_padding, bottom_padding = cal_padding(inps, stride,
                                                      filter_size)
            left_padding, right_padding = cal_padding(inps, stride,
                                                      filter_size)
            height_padding = bottom_padding
            width_padding = right_padding
            if top_padding != bottom_padding or left_padding != right_padding:
                height_padding = top_padding + stride
                width_padding = left_padding + stride
                self.need_crop = True
            padding = [height_padding, width_padding]
        elif padding_type == "VALID":
            height_padding = 0
            width_padding = 0
            padding = [height_padding, width_padding]
        elif padding_type == "DYNAMIC":
            padding = get_padding(filter_size, stride)
        else:
            padding = padding_type

        self._conv = Conv2D(
            input_channels,
            output_channels,
            filter_size,
            groups=groups,
            stride=stride,
            act=act,
            padding=padding,
            param_attr=param_attr,
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._conv(inputs)
        if self.need_crop:
            x = x[:, :, 1:, 1:]
        return x


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 filter_size,
                 output_channels,
                 stride=1,
                 num_groups=1,
                 padding_type="SAME",
                 conv_act=None,
                 bn_act="swish",
                 use_bn=True,
                 use_bias=False,
                 name=None,
                 conv_name=None,
                 bn_name=None,
                 model_name=None,
                 cur_stage=None):
        super(ConvBNLayer, self).__init__()

W
fix  
wqz960 已提交
337
        self._conv = Conv2ds(
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            input_channels=input_channels,
            output_channels=output_channels,
            filter_size=filter_size,
            stride=stride,
            groups=num_groups,
            act=conv_act,
            padding_type=padding_type,
            name=conv_name,
            use_bias=use_bias,
            model_name=model_name,
            cur_stage=cur_stage)
        self.use_bn = use_bn
        if use_bn is True:
            bn_name = name + bn_name
            param_attr, bias_attr = init_batch_norm_layer(bn_name)

            self._bn = BatchNorm(
                num_channels=output_channels,
                act=bn_act,
                momentum=0.99,
                epsilon=0.001,
                moving_mean_name=bn_name + "_mean",
                moving_variance_name=bn_name + "_variance",
                param_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        if self.use_bn:
            x = self._conv(inputs)
            x = self._bn(x)
            return x
        else:
            return self._conv(inputs)


W
fix  
wqz960 已提交
373
class ExpandConvNorm(fluid.dygraph.Layer):
374 375 376 377 378 379 380
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
381
        super(ExpandConvNorm, self).__init__()
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

        self.oup = block_args.input_filters * block_args.expand_ratio
        self.expand_ratio = block_args.expand_ratio

        if self.expand_ratio != 1:
            self._conv = ConvBNLayer(
                input_channels,
                1,
                self.oup,
                bn_act=None,
                padding_type=padding_type,
                name=name,
                conv_name=name + "_expand_conv",
                bn_name="_bn0",
                model_name=model_name,
                cur_stage=cur_stage)

    def forward(self, inputs):
        if self.expand_ratio != 1:
            return self._conv(inputs)
        else:
            return inputs


W
wqz960 已提交
406
class DepthwiseConvNorm(fluid.dygraph.Layer):
407 408 409 410 411 412 413
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
414
        super(DepthwiseConvNorm, self).__init__()
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

        self.k = block_args.kernel_size
        self.s = block_args.stride
        if isinstance(self.s, list) or isinstance(self.s, tuple):
            self.s = self.s[0]
        oup = block_args.input_filters * block_args.expand_ratio

        self._conv = ConvBNLayer(
            input_channels,
            self.k,
            oup,
            self.s,
            num_groups=input_channels,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_depthwise_conv",
            bn_name="_bn1",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


W
wqz960 已提交
440
class ProjectConvNorm(fluid.dygraph.Layer):
441 442 443 444 445 446 447
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
448
        super(ProjectConvNorm, self).__init__()
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

        final_oup = block_args.output_filters

        self._conv = ConvBNLayer(
            input_channels,
            1,
            final_oup,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_project_conv",
            bn_name="_bn2",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


W
fix  
wqz960 已提交
468
class SEBlock(fluid.dygraph.Layer):
469 470 471 472 473 474 475 476
    def __init__(self,
                 input_channels,
                 num_squeezed_channels,
                 oup,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
477
        super(SEBlock, self).__init__()
478 479 480

        self._pool = Pool2D(
            pool_type="avg", global_pooling=True, use_cudnn=False)
W
fix  
wqz960 已提交
481
        self._conv1 = Conv2ds(
482 483 484 485 486 487 488 489
            input_channels,
            num_squeezed_channels,
            1,
            use_bias=True,
            padding_type=padding_type,
            act="swish",
            name=name + "_se_reduce")

W
fix  
wqz960 已提交
490
        self._conv2 = Conv2ds(
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
            num_squeezed_channels,
            oup,
            1,
            use_bias=True,
            padding_type=padding_type,
            name=name + "_se_expand")

    def forward(self, inputs):
        x = self._pool(inputs)
        x = self._conv1(x)
        x = self._conv2(x)
        layer_helper = LayerHelper(self.full_name(), act='sigmoid')
        x = layer_helper.append_activation(x)
        return fluid.layers.elementwise_mul(inputs, x)


W
fix  
wqz960 已提交
507
class MbConvBlock(fluid.dygraph.Layer):
508 509 510 511 512 513 514 515 516 517
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 use_se,
                 name=None,
                 drop_connect_rate=None,
                 is_test=False,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
518
        super(MbConvBlock, self).__init__()
519 520 521 522 523 524 525 526 527 528 529

        oup = block_args.input_filters * block_args.expand_ratio
        self.block_args = block_args
        self.has_se = use_se and (block_args.se_ratio is not None) and (
            0 < block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip
        self.expand_ratio = block_args.expand_ratio
        self.drop_connect_rate = drop_connect_rate
        self.is_test = is_test

        if self.expand_ratio != 1:
W
fix  
wqz960 已提交
530
            self._ecn = ExpandConvNorm(
531 532 533 534 535 536 537
                input_channels,
                block_args,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
538
        self._dcn = DepthwiseConvNorm(
539 540 541 542 543 544 545 546 547 548
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

        if self.has_se:
            num_squeezed_channels = max(
                1, int(block_args.input_filters * block_args.se_ratio))
W
fix  
wqz960 已提交
549
            self._se = SEBlock(
550 551 552 553 554 555 556 557
                input_channels * block_args.expand_ratio,
                num_squeezed_channels,
                oup,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
558
        self._pcn = ProjectConvNorm(
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        x = inputs
        layer_helper = LayerHelper(self.full_name(), act='swish')
        if self.expand_ratio != 1:
            x = self._ecn(x)
            x = layer_helper.append_activation(x)
        x = self._dcn(x)
        x = layer_helper.append_activation(x)
        if self.has_se:
            x = self._se(x)
        x = self._pcn(x)
W
fix  
wqz960 已提交
577 578 579
        if self.id_skip and \
            self.block_args.stride == 1 and \
            self.block_args.input_filters == self.block_args.output_filters:
580 581 582 583 584 585
            if self.drop_connect_rate:
                x = _drop_connect(x, self.drop_connect_rate, self.is_test)
            x = fluid.layers.elementwise_add(x, inputs)
        return x


W
fix  
wqz960 已提交
586
class ConvStemNorm(fluid.dygraph.Layer):
587 588 589 590 591 592 593
    def __init__(self,
                 input_channels,
                 padding_type,
                 _global_params,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
594
        super(ConvStemNorm, self).__init__()
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

        output_channels = round_filters(32, _global_params)
        self._conv = ConvBNLayer(
            input_channels,
            filter_size=3,
            output_channels=output_channels,
            stride=2,
            bn_act=None,
            padding_type=padding_type,
            name="",
            conv_name="_conv_stem",
            bn_name="_bn0",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


W
fix  
wqz960 已提交
614
class ExtractFeatures(fluid.dygraph.Layer):
615 616 617 618 619 620 621 622
    def __init__(self,
                 input_channels,
                 _block_args,
                 _global_params,
                 padding_type,
                 use_se,
                 is_test,
                 model_name=None):
W
fix  
wqz960 已提交
623
        super(ExtractFeatures, self).__init__()
624 625 626

        self._global_params = _global_params

W
fix  
wqz960 已提交
627
        self._conv_stem = ConvStemNorm(
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
            input_channels,
            padding_type=padding_type,
            _global_params=_global_params,
            model_name=model_name,
            cur_stage=0)

        self.block_args_copy = copy.deepcopy(_block_args)
        idx = 0
        block_size = 0
        for block_arg in self.block_args_copy:
            block_arg = block_arg._replace(
                input_filters=round_filters(block_arg.input_filters,
                                            _global_params),
                output_filters=round_filters(block_arg.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_arg.num_repeat, _global_params))
            block_size += 1
            for _ in range(block_arg.num_repeat - 1):
                block_size += 1

        self.conv_seq = []
        cur_stage = 1
        for block_args in _block_args:
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            _global_params),
                output_filters=round_filters(block_args.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         _global_params))

            drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / block_size

            _mc_block = self.add_sublayer(
                "_blocks." + str(idx) + ".",
W
fix  
wqz960 已提交
665
                MbConvBlock(
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
                    block_args.input_filters,
                    block_args=block_args,
                    padding_type=padding_type,
                    use_se=use_se,
                    name="_blocks." + str(idx) + ".",
                    drop_connect_rate=drop_connect_rate,
                    model_name=model_name,
                    cur_stage=cur_stage))
            self.conv_seq.append(_mc_block)
            idx += 1
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
                if drop_connect_rate:
                    drop_connect_rate *= float(idx) / block_size
                _mc_block = self.add_sublayer(
                    "block." + str(idx) + ".",
W
fix  
wqz960 已提交
685
                    MbConvBlock(
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
                        block_args.input_filters,
                        block_args,
                        padding_type=padding_type,
                        use_se=use_se,
                        name="_blocks." + str(idx) + ".",
                        drop_connect_rate=drop_connect_rate,
                        model_name=model_name,
                        cur_stage=cur_stage))
                self.conv_seq.append(_mc_block)
                idx += 1
            cur_stage += 1

    def forward(self, inputs):
        x = self._conv_stem(inputs)
        layer_helper = LayerHelper(self.full_name(), act='swish')
        x = layer_helper.append_activation(x)
        for _mc_block in self.conv_seq:
            x = _mc_block(x)
        return x


class EfficientNet(fluid.dygraph.Layer):
    def __init__(self,
                 name="b0",
                 is_test=True,
                 padding_type="SAME",
                 override_params=None,
                 use_se=True,
                 class_dim=1000):
        super(EfficientNet, self).__init__()

        model_name = 'efficientnet-' + name
        self.name = name
        self._block_args, self._global_params = get_model_params(
            model_name, override_params)
        self.padding_type = padding_type
        self.use_se = use_se
        self.is_test = is_test

W
fix  
wqz960 已提交
725
        self._ef = ExtractFeatures(
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
            3,
            self._block_args,
            self._global_params,
            self.padding_type,
            self.use_se,
            self.is_test,
            model_name=self.name)

        output_channels = round_filters(1280, self._global_params)
        if name == "b0_small" or name == "b0" or name == "b1":
            oup = 320
        elif name == "b2":
            oup = 352
        elif name == "b3":
            oup = 384
        elif name == "b4":
            oup = 448
        elif name == "b5":
            oup = 512
        elif name == "b6":
            oup = 576
        elif name == "b7":
            oup = 640
        self._conv = ConvBNLayer(
            oup,
            1,
            output_channels,
            bn_act="swish",
            padding_type=self.padding_type,
            name="",
            conv_name="_conv_head",
            bn_name="_bn1",
            model_name=self.name,
            cur_stage=7)
        self._pool = Pool2D(pool_type="avg", global_pooling=True)

        if self._global_params.dropout_rate:
            self._drop = Dropout(
                p=self._global_params.dropout_rate,
                dropout_implementation="upscale_in_train")

        param_attr, bias_attr = init_fc_layer("_fc")
        self._fc = Linear(
            output_channels,
            class_dim,
            param_attr=param_attr,
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._ef(inputs)
        x = self._conv(x)
        x = self._pool(x)
        if self._global_params.dropout_rate:
            x = self._drop(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        x = self._fc(x)
        return x


def EfficientNetB0_small(is_test=True,
                         padding_type='DYNAMIC',
                         override_params=None,
W
wqz960 已提交
788 789
                         use_se=False,
                         **args):
W
WuHaobo 已提交
790 791
    model = EfficientNet(
        name='b0',
W
fix  
wqz960 已提交
792
        is_test=is_test,
W
WuHaobo 已提交
793 794
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
795 796
        use_se=use_se,
        **args)
W
WuHaobo 已提交
797 798 799
    return model


800 801 802
def EfficientNetB0(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
803 804
                   use_se=True,
                   **args):
littletomatodonkey's avatar
littletomatodonkey 已提交
805 806
    model = EfficientNet(
        name='b0',
W
fix  
wqz960 已提交
807
        is_test=is_test,
littletomatodonkey's avatar
littletomatodonkey 已提交
808 809
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
810 811
        use_se=use_se,
        **args)
littletomatodonkey's avatar
littletomatodonkey 已提交
812 813 814
    return model


W
WuHaobo 已提交
815 816 817
def EfficientNetB1(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
818 819
                   use_se=True,
                   **args):
W
WuHaobo 已提交
820 821
    model = EfficientNet(
        name='b1',
W
fix  
wqz960 已提交
822
        is_test=is_test,
W
WuHaobo 已提交
823 824
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
825 826
        use_se=use_se,
        **args)
W
WuHaobo 已提交
827 828 829 830 831 832
    return model


def EfficientNetB2(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
833 834
                   use_se=True,
                   **args):
W
WuHaobo 已提交
835 836
    model = EfficientNet(
        name='b2',
W
fix  
wqz960 已提交
837
        is_test=is_test,
W
WuHaobo 已提交
838 839
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
840 841
        use_se=use_se,
        **args)
W
WuHaobo 已提交
842 843 844 845 846 847
    return model


def EfficientNetB3(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
848 849
                   use_se=True,
                   **args):
W
WuHaobo 已提交
850 851
    model = EfficientNet(
        name='b3',
W
fix  
wqz960 已提交
852
        is_test=is_test,
W
WuHaobo 已提交
853 854
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
855 856
        use_se=use_se,
        **args)
W
WuHaobo 已提交
857 858 859 860 861 862
    return model


def EfficientNetB4(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
863 864
                   use_se=True,
                   **args):
W
WuHaobo 已提交
865 866
    model = EfficientNet(
        name='b4',
W
fix  
wqz960 已提交
867
        is_test=is_test,
W
WuHaobo 已提交
868 869
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
870 871
        use_se=use_se,
        **args)
W
WuHaobo 已提交
872 873 874 875 876 877
    return model


def EfficientNetB5(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
878 879
                   use_se=True,
                   **args):
W
WuHaobo 已提交
880 881
    model = EfficientNet(
        name='b5',
W
fix  
wqz960 已提交
882
        is_test=is_test,
W
WuHaobo 已提交
883 884
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
885 886
        use_se=use_se,
        **args)
W
WuHaobo 已提交
887 888 889 890 891 892
    return model


def EfficientNetB6(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
893 894
                   use_se=True,
                   **args):
W
WuHaobo 已提交
895 896
    model = EfficientNet(
        name='b6',
W
fix  
wqz960 已提交
897
        is_test=is_test,
W
WuHaobo 已提交
898 899
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
900 901
        use_se=use_se,
        **args)
W
WuHaobo 已提交
902 903 904 905 906 907
    return model


def EfficientNetB7(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
908 909
                   use_se=True,
                   **args):
W
WuHaobo 已提交
910 911
    model = EfficientNet(
        name='b7',
W
fix  
wqz960 已提交
912
        is_test=is_test,
W
WuHaobo 已提交
913 914
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
915 916 917
        use_se=use_se,
        **args)
    return model