efficientnet.py 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
# coding:utf-8
import numpy as np
import argparse
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework
W
WuHaobo 已提交
12

13
import math
W
WuHaobo 已提交
14 15 16 17 18
import collections
import re
import copy

__all__ = [
19 20 21
    'EfficientNet', 'EfficientNetB0_small', 'EfficientNetB0', 'EfficientNetB1',
    'EfficientNetB2', 'EfficientNetB3', 'EfficientNetB4', 'EfficientNetB5',
    'EfficientNetB6', 'EfficientNetB7'
W
WuHaobo 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
]

GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum',
    'batch_norm_epsilon',
    'dropout_rate',
    'num_classes',
    'width_coefficient',
    'depth_coefficient',
    'depth_divisor',
    'min_depth',
    'drop_connect_rate',
])

BlockArgs = collections.namedtuple('BlockArgs', [
    'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
    'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])

GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)


def efficientnet_params(model_name):
    """ Map EfficientNet model name to parameter coefficients. """
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None,
                 depth_coefficient=None,
                 dropout_rate=0.2,
                 drop_connect_rate=0.2):
    """ Get block arguments according to parameter and coefficients. """
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        num_classes=1000,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None)

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """ Get the block args and global params for a given model """
    if model_name.startswith('efficientnet'):
        w, d, _, p = efficientnet_params(model_name)
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p)
    else:
        raise NotImplementedError('model name is not pre-defined: %s' %
                                  model_name)
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


def round_filters(filters, global_params):
    """ Calculate and round number of filters based on depth multiplier. """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth,
                      int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """ Round number of filters based on depth multiplier. """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


class BlockDecoder(object):
littletomatodonkey's avatar
littletomatodonkey 已提交
130 131 132
    """
    Block Decoder, straight from the official TensorFlow repository.
    """
W
WuHaobo 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    @staticmethod
    def _decode_block_string(block_string):
        """ Gets a block through a string notation of arguments. """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
littletomatodonkey's avatar
littletomatodonkey 已提交
148
        cond_1 = ('s' in options and len(options['s']) == 1)
S
shippingwang 已提交
149 150
        cond_2 = ((len(options['s']) == 2) and
                  (options['s'][0] == options['s'][1]))
littletomatodonkey's avatar
littletomatodonkey 已提交
151
        assert (cond_1 or cond_2)
W
WuHaobo 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

        return BlockArgs(
            kernel_size=int(options['k']),
            num_repeat=int(options['r']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            expand_ratio=int(options['e']),
            id_skip=('noskip' not in block_string),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=[int(options['s'][0])])

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
            'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
            (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
            'i%d' % block.input_filters, 'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """
littletomatodonkey's avatar
littletomatodonkey 已提交
180
        Decode a list of string notations to specify blocks in the network.
W
WuHaobo 已提交
181

littletomatodonkey's avatar
littletomatodonkey 已提交
182 183 184
        string_list: list of strings, each string is a notation of block
        return
            list of BlockArgs namedtuples of block args
W
WuHaobo 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """
        Encodes a list of BlockArgs to a list of strings.

        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
def initial_type(name, use_bias=False):
    param_attr = ParamAttr(name=name + "_weights")
    if use_bias:
        bias_attr = ParamAttr(name=name + "_offset")
    else:
        bias_attr = False
    return param_attr, bias_attr


def init_batch_norm_layer(name="batch_norm"):
    param_attr = ParamAttr(name=name + "_scale")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def init_fc_layer(name="fc"):
    param_attr = ParamAttr(name=name + "_weights")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


inp_shape = {
    "b0_small": [224, 112, 112, 56, 28, 14, 14, 7],
    "b0": [224, 112, 112, 56, 28, 14, 14, 7],
    "b1": [240, 120, 120, 60, 30, 15, 15, 8],
    "b2": [260, 130, 130, 65, 33, 17, 17, 9],
    "b3": [300, 150, 150, 75, 38, 19, 19, 10],
    "b4": [380, 190, 190, 95, 48, 24, 24, 12],
    "b5": [456, 228, 228, 114, 57, 29, 29, 15],
    "b6": [528, 264, 264, 132, 66, 33, 33, 17],
    "b7": [600, 300, 300, 150, 75, 38, 38, 19]
}


def _drop_connect(inputs, prob, is_test):
    if is_test:
        return inputs
    keep_prob = 1.0 - prob
    inputs_shape = fluid.layers.shape(inputs)
    random_tensor = keep_prob + fluid.layers.uniform_random(
        shape=[inputs_shape[0], 1, 1, 1], min=0., max=1.)
    binary_tensor = fluid.layers.floor(random_tensor)
    output = inputs / keep_prob * binary_tensor
    return output


W
fix  
wqz960 已提交
261
class Conv2ds(fluid.dygraph.Layer):
262 263 264 265 266 267 268 269 270 271 272 273 274
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=None,
                 name="conv2d",
                 act=None,
                 use_bias=False,
                 padding_type=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
275
        super(Conv2ds, self).__init__()
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

        param_attr, bias_attr = initial_type(name=name, use_bias=use_bias)

        def get_padding(filter_size, stride=1, dilation=1):
            padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
            return padding

        inps = 1 if model_name == None and cur_stage == None else inp_shape[
            model_name][cur_stage]
        self.need_crop = False
        if padding_type == "SAME":
            top_padding, bottom_padding = cal_padding(inps, stride,
                                                      filter_size)
            left_padding, right_padding = cal_padding(inps, stride,
                                                      filter_size)
            height_padding = bottom_padding
            width_padding = right_padding
            if top_padding != bottom_padding or left_padding != right_padding:
                height_padding = top_padding + stride
                width_padding = left_padding + stride
                self.need_crop = True
            padding = [height_padding, width_padding]
        elif padding_type == "VALID":
            height_padding = 0
            width_padding = 0
            padding = [height_padding, width_padding]
        elif padding_type == "DYNAMIC":
            padding = get_padding(filter_size, stride)
        else:
            padding = padding_type

        self._conv = Conv2D(
            input_channels,
            output_channels,
            filter_size,
            groups=groups,
            stride=stride,
            act=act,
            padding=padding,
            param_attr=param_attr,
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._conv(inputs)
        if self.need_crop:
            x = x[:, :, 1:, 1:]
        return x


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 filter_size,
                 output_channels,
                 stride=1,
                 num_groups=1,
                 padding_type="SAME",
                 conv_act=None,
                 bn_act="swish",
                 use_bn=True,
                 use_bias=False,
                 name=None,
                 conv_name=None,
                 bn_name=None,
                 model_name=None,
                 cur_stage=None):
        super(ConvBNLayer, self).__init__()

W
fix  
wqz960 已提交
344
        self._conv = Conv2ds(
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            input_channels=input_channels,
            output_channels=output_channels,
            filter_size=filter_size,
            stride=stride,
            groups=num_groups,
            act=conv_act,
            padding_type=padding_type,
            name=conv_name,
            use_bias=use_bias,
            model_name=model_name,
            cur_stage=cur_stage)
        self.use_bn = use_bn
        if use_bn is True:
            bn_name = name + bn_name
            param_attr, bias_attr = init_batch_norm_layer(bn_name)

            self._bn = BatchNorm(
                num_channels=output_channels,
                act=bn_act,
                momentum=0.99,
                epsilon=0.001,
                moving_mean_name=bn_name + "_mean",
                moving_variance_name=bn_name + "_variance",
                param_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        if self.use_bn:
            x = self._conv(inputs)
            x = self._bn(x)
            return x
        else:
            return self._conv(inputs)


W
fix  
wqz960 已提交
380
class ExpandConvNorm(fluid.dygraph.Layer):
381 382 383 384 385 386 387
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
388
        super(ExpandConvNorm, self).__init__()
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

        self.oup = block_args.input_filters * block_args.expand_ratio
        self.expand_ratio = block_args.expand_ratio

        if self.expand_ratio != 1:
            self._conv = ConvBNLayer(
                input_channels,
                1,
                self.oup,
                bn_act=None,
                padding_type=padding_type,
                name=name,
                conv_name=name + "_expand_conv",
                bn_name="_bn0",
                model_name=model_name,
                cur_stage=cur_stage)

    def forward(self, inputs):
        if self.expand_ratio != 1:
            return self._conv(inputs)
        else:
            return inputs


class Depthwise_Conv_Norm(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
        super(Depthwise_Conv_Norm, self).__init__()

        self.k = block_args.kernel_size
        self.s = block_args.stride
        if isinstance(self.s, list) or isinstance(self.s, tuple):
            self.s = self.s[0]
        oup = block_args.input_filters * block_args.expand_ratio

        self._conv = ConvBNLayer(
            input_channels,
            self.k,
            oup,
            self.s,
            num_groups=input_channels,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_depthwise_conv",
            bn_name="_bn1",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


class Project_Conv_Norm(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
        super(Project_Conv_Norm, self).__init__()

        final_oup = block_args.output_filters

        self._conv = ConvBNLayer(
            input_channels,
            1,
            final_oup,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_project_conv",
            bn_name="_bn2",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


W
fix  
wqz960 已提交
475
class SEBlock(fluid.dygraph.Layer):
476 477 478 479 480 481 482 483
    def __init__(self,
                 input_channels,
                 num_squeezed_channels,
                 oup,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
484
        super(SEBlock, self).__init__()
485 486 487

        self._pool = Pool2D(
            pool_type="avg", global_pooling=True, use_cudnn=False)
W
fix  
wqz960 已提交
488
        self._conv1 = Conv2ds(
489 490 491 492 493 494 495 496
            input_channels,
            num_squeezed_channels,
            1,
            use_bias=True,
            padding_type=padding_type,
            act="swish",
            name=name + "_se_reduce")

W
fix  
wqz960 已提交
497
        self._conv2 = Conv2ds(
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
            num_squeezed_channels,
            oup,
            1,
            use_bias=True,
            padding_type=padding_type,
            name=name + "_se_expand")

    def forward(self, inputs):
        x = self._pool(inputs)
        x = self._conv1(x)
        x = self._conv2(x)
        layer_helper = LayerHelper(self.full_name(), act='sigmoid')
        x = layer_helper.append_activation(x)
        return fluid.layers.elementwise_mul(inputs, x)


W
fix  
wqz960 已提交
514
class MbConvBlock(fluid.dygraph.Layer):
515 516 517 518 519 520 521 522 523 524
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 use_se,
                 name=None,
                 drop_connect_rate=None,
                 is_test=False,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
525
        super(MbConvBlock, self).__init__()
526 527 528 529 530 531 532 533 534 535 536

        oup = block_args.input_filters * block_args.expand_ratio
        self.block_args = block_args
        self.has_se = use_se and (block_args.se_ratio is not None) and (
            0 < block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip
        self.expand_ratio = block_args.expand_ratio
        self.drop_connect_rate = drop_connect_rate
        self.is_test = is_test

        if self.expand_ratio != 1:
W
fix  
wqz960 已提交
537
            self._ecn = ExpandConvNorm(
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
                input_channels,
                block_args,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

        self._dcn = Depthwise_Conv_Norm(
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

        if self.has_se:
            num_squeezed_channels = max(
                1, int(block_args.input_filters * block_args.se_ratio))
W
fix  
wqz960 已提交
556
            self._se = SEBlock(
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
                input_channels * block_args.expand_ratio,
                num_squeezed_channels,
                oup,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

        self._pcn = Project_Conv_Norm(
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        x = inputs
        layer_helper = LayerHelper(self.full_name(), act='swish')
        if self.expand_ratio != 1:
            x = self._ecn(x)
            x = layer_helper.append_activation(x)
        x = self._dcn(x)
        x = layer_helper.append_activation(x)
        if self.has_se:
            x = self._se(x)
        x = self._pcn(x)
W
fix  
wqz960 已提交
584 585 586
        if self.id_skip and \
            self.block_args.stride == 1 and \
            self.block_args.input_filters == self.block_args.output_filters:
587 588 589 590 591 592
            if self.drop_connect_rate:
                x = _drop_connect(x, self.drop_connect_rate, self.is_test)
            x = fluid.layers.elementwise_add(x, inputs)
        return x


W
fix  
wqz960 已提交
593
class ConvStemNorm(fluid.dygraph.Layer):
594 595 596 597 598 599 600
    def __init__(self,
                 input_channels,
                 padding_type,
                 _global_params,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
601
        super(ConvStemNorm, self).__init__()
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

        output_channels = round_filters(32, _global_params)
        self._conv = ConvBNLayer(
            input_channels,
            filter_size=3,
            output_channels=output_channels,
            stride=2,
            bn_act=None,
            padding_type=padding_type,
            name="",
            conv_name="_conv_stem",
            bn_name="_bn0",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


W
fix  
wqz960 已提交
621
class ExtractFeatures(fluid.dygraph.Layer):
622 623 624 625 626 627 628 629
    def __init__(self,
                 input_channels,
                 _block_args,
                 _global_params,
                 padding_type,
                 use_se,
                 is_test,
                 model_name=None):
W
fix  
wqz960 已提交
630
        super(ExtractFeatures, self).__init__()
631 632 633

        self._global_params = _global_params

W
fix  
wqz960 已提交
634
        self._conv_stem = ConvStemNorm(
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
            input_channels,
            padding_type=padding_type,
            _global_params=_global_params,
            model_name=model_name,
            cur_stage=0)

        self.block_args_copy = copy.deepcopy(_block_args)
        idx = 0
        block_size = 0
        for block_arg in self.block_args_copy:
            block_arg = block_arg._replace(
                input_filters=round_filters(block_arg.input_filters,
                                            _global_params),
                output_filters=round_filters(block_arg.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_arg.num_repeat, _global_params))
            block_size += 1
            for _ in range(block_arg.num_repeat - 1):
                block_size += 1

        self.conv_seq = []
        cur_stage = 1
        for block_args in _block_args:
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            _global_params),
                output_filters=round_filters(block_args.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         _global_params))

            drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / block_size

            _mc_block = self.add_sublayer(
                "_blocks." + str(idx) + ".",
W
fix  
wqz960 已提交
672
                MbConvBlock(
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
                    block_args.input_filters,
                    block_args=block_args,
                    padding_type=padding_type,
                    use_se=use_se,
                    name="_blocks." + str(idx) + ".",
                    drop_connect_rate=drop_connect_rate,
                    model_name=model_name,
                    cur_stage=cur_stage))
            self.conv_seq.append(_mc_block)
            idx += 1
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
                if drop_connect_rate:
                    drop_connect_rate *= float(idx) / block_size
                _mc_block = self.add_sublayer(
                    "block." + str(idx) + ".",
W
fix  
wqz960 已提交
692
                    MbConvBlock(
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
                        block_args.input_filters,
                        block_args,
                        padding_type=padding_type,
                        use_se=use_se,
                        name="_blocks." + str(idx) + ".",
                        drop_connect_rate=drop_connect_rate,
                        model_name=model_name,
                        cur_stage=cur_stage))
                self.conv_seq.append(_mc_block)
                idx += 1
            cur_stage += 1

    def forward(self, inputs):
        x = self._conv_stem(inputs)
        layer_helper = LayerHelper(self.full_name(), act='swish')
        x = layer_helper.append_activation(x)
        for _mc_block in self.conv_seq:
            x = _mc_block(x)
        return x


class EfficientNet(fluid.dygraph.Layer):
    def __init__(self,
                 name="b0",
                 is_test=True,
                 padding_type="SAME",
                 override_params=None,
                 use_se=True,
                 class_dim=1000):
        super(EfficientNet, self).__init__()

        model_name = 'efficientnet-' + name
        self.name = name
        self._block_args, self._global_params = get_model_params(
            model_name, override_params)
        self.padding_type = padding_type
        self.use_se = use_se
        self.is_test = is_test

W
fix  
wqz960 已提交
732
        self._ef = ExtractFeatures(
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
            3,
            self._block_args,
            self._global_params,
            self.padding_type,
            self.use_se,
            self.is_test,
            model_name=self.name)

        output_channels = round_filters(1280, self._global_params)
        if name == "b0_small" or name == "b0" or name == "b1":
            oup = 320
        elif name == "b2":
            oup = 352
        elif name == "b3":
            oup = 384
        elif name == "b4":
            oup = 448
        elif name == "b5":
            oup = 512
        elif name == "b6":
            oup = 576
        elif name == "b7":
            oup = 640
        self._conv = ConvBNLayer(
            oup,
            1,
            output_channels,
            bn_act="swish",
            padding_type=self.padding_type,
            name="",
            conv_name="_conv_head",
            bn_name="_bn1",
            model_name=self.name,
            cur_stage=7)
        self._pool = Pool2D(pool_type="avg", global_pooling=True)

        if self._global_params.dropout_rate:
            self._drop = Dropout(
                p=self._global_params.dropout_rate,
                dropout_implementation="upscale_in_train")

        param_attr, bias_attr = init_fc_layer("_fc")
        self._fc = Linear(
            output_channels,
            class_dim,
            param_attr=param_attr,
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._ef(inputs)
        x = self._conv(x)
        x = self._pool(x)
        if self._global_params.dropout_rate:
            x = self._drop(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        x = self._fc(x)
        return x


def EfficientNetB0_small(is_test=True,
                         padding_type='DYNAMIC',
                         override_params=None,
                         use_se=False):
W
WuHaobo 已提交
796 797
    model = EfficientNet(
        name='b0',
W
fix  
wqz960 已提交
798
        is_test=is_test,
W
WuHaobo 已提交
799 800 801 802 803 804
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


805 806 807 808
def EfficientNetB0(is_test=False,
                   padding_type='SAME',
                   override_params=None,
                   use_se=True):
littletomatodonkey's avatar
littletomatodonkey 已提交
809 810
    model = EfficientNet(
        name='b0',
W
fix  
wqz960 已提交
811
        is_test=is_test,
littletomatodonkey's avatar
littletomatodonkey 已提交
812 813 814 815 816 817
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


W
WuHaobo 已提交
818 819 820 821 822 823
def EfficientNetB1(is_test=False,
                   padding_type='SAME',
                   override_params=None,
                   use_se=True):
    model = EfficientNet(
        name='b1',
W
fix  
wqz960 已提交
824
        is_test=is_test,
W
WuHaobo 已提交
825 826 827 828 829 830 831 832 833 834 835 836
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetB2(is_test=False,
                   padding_type='SAME',
                   override_params=None,
                   use_se=True):
    model = EfficientNet(
        name='b2',
W
fix  
wqz960 已提交
837
        is_test=is_test,
W
WuHaobo 已提交
838 839 840 841 842 843 844 845 846 847 848 849
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetB3(is_test=False,
                   padding_type='SAME',
                   override_params=None,
                   use_se=True):
    model = EfficientNet(
        name='b3',
W
fix  
wqz960 已提交
850
        is_test=is_test,
W
WuHaobo 已提交
851 852 853 854 855 856 857 858 859 860 861 862
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetB4(is_test=False,
                   padding_type='SAME',
                   override_params=None,
                   use_se=True):
    model = EfficientNet(
        name='b4',
W
fix  
wqz960 已提交
863
        is_test=is_test,
W
WuHaobo 已提交
864 865 866 867 868 869 870 871 872 873 874 875
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetB5(is_test=False,
                   padding_type='SAME',
                   override_params=None,
                   use_se=True):
    model = EfficientNet(
        name='b5',
W
fix  
wqz960 已提交
876
        is_test=is_test,
W
WuHaobo 已提交
877 878 879 880 881 882 883 884 885 886 887 888
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetB6(is_test=False,
                   padding_type='SAME',
                   override_params=None,
                   use_se=True):
    model = EfficientNet(
        name='b6',
W
fix  
wqz960 已提交
889
        is_test=is_test,
W
WuHaobo 已提交
890 891 892 893 894 895 896 897 898 899 900 901
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model


def EfficientNetB7(is_test=False,
                   padding_type='SAME',
                   override_params=None,
                   use_se=True):
    model = EfficientNet(
        name='b7',
W
fix  
wqz960 已提交
902
        is_test=is_test,
W
WuHaobo 已提交
903 904 905 906
        padding_type=padding_type,
        override_params=override_params,
        use_se=use_se)
    return model
W
fix  
wqz960 已提交
907 908