main.cpp 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <opencv2/core/utils/filesystem.hpp>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <auto_log/autolog.h>
D
dongshuilong 已提交
30
#include <gflags/gflags.h>
31
#include <include/cls.h>
32
#include <include/object_detector.h>
D
dongshuilong 已提交
33
#include <include/vector_search.h>
D
dongshuilong 已提交
34
#include <include/yaml_config.h>
35 36 37

using namespace std;
using namespace cv;
38

D
dongshuilong 已提交
39 40 41
DEFINE_string(config, "", "Path of yaml file");
DEFINE_string(c, "", "Path of yaml file");

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
                     const std::vector<std::string> &all_img_paths,
                     const int batch_size, PaddleDetection::ObjectDetector *det,
                     std::vector<PaddleDetection::ObjectResult> &im_result,
                     std::vector<int> &im_bbox_num, std::vector<double> &det_t,
                     const bool visual_det = false,
                     const bool run_benchmark = false,
                     const std::string &output_dir = "output") {
  int steps = ceil(float(all_img_paths.size()) / batch_size);
  //   printf("total images = %d, batch_size = %d, total steps = %d\n",
  //                 all_img_paths.size(), batch_size, steps);
  for (int idx = 0; idx < steps; idx++) {
    int left_image_cnt = all_img_paths.size() - idx * batch_size;
    if (left_image_cnt > batch_size) {
      left_image_cnt = batch_size;
    }
    // for (int bs = 0; bs < left_image_cnt; bs++) {
    // std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
    // cv::Mat im = cv::imread(image_file_path, 1);
    // batch_imgs.insert(batch_imgs.end(), im);
    // }

    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;
    bool is_rbox = false;
    if (run_benchmark) {
      det->Predict(batch_imgs, 10, 10, &result, &bbox_num, &det_times);
    } else {
      det->Predict(batch_imgs, 0, 1, &result, &bbox_num, &det_times);
      // get labels and colormap
      auto labels = det->GetLabelList();
      auto colormap = PaddleDetection::GenerateColorMap(labels.size());

      int item_start_idx = 0;
      for (int i = 0; i < left_image_cnt; i++) {
        cv::Mat im = batch_imgs[i];
        int detect_num = 0;

        for (int j = 0; j < bbox_num[i]; j++) {
          PaddleDetection::ObjectResult item = result[item_start_idx + j];
          if (item.confidence < det->GetThreshold() || item.class_id == -1) {
            continue;
          }
          detect_num += 1;
          im_result.push_back(item);
          if (visual_det) {
            if (item.rect.size() > 6) {
              is_rbox = true;
              printf(
                  "class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
                  item.class_id, item.confidence, item.rect[0], item.rect[1],
                  item.rect[2], item.rect[3], item.rect[4], item.rect[5],
                  item.rect[6], item.rect[7]);
            } else {
              printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
                     item.class_id, item.confidence, item.rect[0], item.rect[1],
                     item.rect[2], item.rect[3]);
            }
          }
        }
        im_bbox_num.push_back(detect_num);
        item_start_idx = item_start_idx + bbox_num[i];

        // Visualization result
        if (visual_det) {
          std::cout << all_img_paths.at(idx * batch_size + i)
                    << " The number of detected box: " << detect_num
                    << std::endl;
          cv::Mat vis_img = PaddleDetection::VisualizeResult(
              im, im_result, labels, colormap, is_rbox);
          std::vector<int> compression_params;
          compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
          compression_params.push_back(95);
          std::string output_path(output_dir);
          if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
            output_path += OS_PATH_SEP;
          }
          std::string image_file_path = all_img_paths.at(idx * batch_size + i);
          output_path +=
              image_file_path.substr(image_file_path.find_last_of('/') + 1);
          cv::imwrite(output_path, vis_img, compression_params);
          printf("Visualized output saved as %s\n", output_path.c_str());
        }
      }
    }
    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
}
134 135

int main(int argc, char **argv) {
D
dongshuilong 已提交
136 137 138 139 140 141 142
  google::ParseCommandLineFlags(&argc, &argv, true);
  std::string yaml_path = "";
  if (FLAGS_config == "" && FLAGS_c == "") {
    std::cerr << "[ERROR] usage: " << std::endl
              << argv[0] << " -c $yaml_path" << std::endl
              << "or:" << std::endl
              << argv[0] << " -config $yaml_path" << std::endl;
143
    exit(1);
D
dongshuilong 已提交
144 145 146 147
  } else if (FLAGS_config != "") {
    yaml_path = FLAGS_config;
  } else {
    yaml_path = FLAGS_c;
148 149
  }

D
dongshuilong 已提交
150
  YamlConfig config(yaml_path);
151 152
  config.PrintConfigInfo();

D
dongshuilong 已提交
153 154 155 156 157
  // initialize detector, rec_Model, vector_search
  PaddleClas::Classifier classifier(config.config_file);
  PaddleDetection::ObjectDetector detector(config.config_file);
  VectorSearch searcher(config.config_file);

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  // config
  const int batch_size = config.config_file["Global"]["batch_size"].as<int>();
  bool visual_det = false;
  if (config.config_file["Global"]["visual_det"].IsDefined()) {
    visual_det = config.config_file["Global"]["visual_det"].as<bool>();
  }
  bool run_benchmark = false;
  if (config.config_file["Global"]["benchmark"].IsDefined()) {
    run_benchmark = config.config_file["Global"]["benchmark"].as<bool>();
  }
  int max_det_results = 5;
  if (config.config_file["Global"]["max_det_results"].IsDefined()) {
    max_det_results = config.config_file["Global"]["max_det_results"].as<int>();
  }

D
dongshuilong 已提交
173
  // load image_file_path
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  std::string path =
      config.config_file["Global"]["infer_imgs"].as<std::string>();
  std::vector<std::string> img_files_list;
  if (cv::utils::fs::isDirectory(path)) {
    std::vector<cv::String> filenames;
    cv::glob(path, filenames);
    for (auto f : filenames) {
      img_files_list.push_back(f);
    }
  } else {
    img_files_list.push_back(path);
  }
  std::cout << "img_file_list length: " << img_files_list.size() << std::endl;

  double elapsed_time = 0.0;
189 190 191 192 193 194
  std::vector<double> cls_times = {0, 0, 0};
  std::vector<double> det_times = {0, 0, 0};
  std::vector<cv::Mat> batch_imgs;
  std::vector<std::string> img_paths;
  std::vector<PaddleDetection::ObjectResult> det_result;
  std::vector<int> det_bbox_num;
D
dongshuilong 已提交
195 196
  std::vector<float> features;
  std::vector<float> feature;
197

198 199 200 201 202 203 204 205 206 207 208
  int warmup_iter = img_files_list.size() > 5 ? 5 : 0;
  for (int idx = 0; idx < img_files_list.size(); ++idx) {
    std::string img_path = img_files_list[idx];
    cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: " << img_path
                << "\n";
      exit(-1);
    }
    cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    batch_imgs.push_back(srcimg);
    img_paths.push_back(img_path);

    // step1: get all detection results
    DetPredictImage(batch_imgs, img_paths, batch_size, &detector, det_result,
                    det_bbox_num, det_times, visual_det, run_benchmark);

    // select max_det_results bbox
    while (det_result.size() > max_det_results) {
      det_result.pop_back();
    }
    // step2: add the whole image for recognition to improve recall
    PaddleDetection::ObjectResult result_whole_img = {
        {0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0};
    det_result.push_back(result_whole_img);
    det_bbox_num[0] = det_result.size() + 1;

D
dongshuilong 已提交
226 227
    // step3: extract feature for all boxes in an inmage
    SearchResult search_result;
228 229 230 231 232 233
    for (int j = 0; j < det_result.size(); ++j) {
      int w = det_result[j].rect[2] - det_result[j].rect[0];
      int h = det_result[j].rect[3] - det_result[j].rect[1];
      cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
      cv::Mat crop_img = srcimg(rect);
      classifier.Run(crop_img, feature, cls_times);
D
dongshuilong 已提交
234
      features.insert(features.end(), feature.begin(), feature.end());
235
    }
D
dongshuilong 已提交
236 237 238 239 240 241 242

    // step4: get search result
    search_result = searcher.Search(features.data(), det_result.size());

    // nms for search result

    // for postprocess
243 244 245 246
    batch_imgs.clear();
    img_paths.clear();
    det_bbox_num.clear();
    det_result.clear();
D
dongshuilong 已提交
247 248
    feature.clear();
    features.clear();
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  }

  std::string presion = "fp32";

  // if (config.use_fp16)
  //   presion = "fp16";
  // if (config.benchmark) {
  //   AutoLogger autolog("Classification", config.use_gpu, config.use_tensorrt,
  //                      config.use_mkldnn, config.cpu_threads, 1,
  //                      "1, 3, 224, 224", presion, cls_times,
  //                      img_files_list.size());
  //   autolog.report();
  // }
  return 0;
}