提交 b3446197 编写于 作者: D dongshuilong

add detect infer for pp_shitu cpp infer

上级 a2875ffd
......@@ -76,11 +76,12 @@ public:
void LoadModel(const std::string &model_path, const std::string &params_path);
// Run predictor
double Run(cv::Mat &img, std::vector<double> *times);
void Run(cv::Mat &img, std::vector<float> &out_data,
std::vector<double> &times);
private:
std::shared_ptr<Predictor> predictor_;
private:
bool use_gpu_ = false;
int gpu_id_ = 0;
int gpu_mem_ = 4000;
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "paddle_inference_api.h" // NOLINT
#include "include/preprocess_op_det.h"
#include "include/yaml_config.h"
using namespace paddle_infer;
namespace PaddleDetection {
// Object Detection Result
struct ObjectResult {
// Rectangle coordinates of detected object: left, right, top, down
std::vector<int> rect;
// Class id of detected object
int class_id;
// Confidence of detected object
float confidence;
};
// Generate visualization colormap for each class
std::vector<int> GenerateColorMap(int num_class);
// Visualiztion Detection Result
cv::Mat VisualizeResult(const cv::Mat &img,
const std::vector<ObjectResult> &results,
const std::vector<std::string> &lables,
const std::vector<int> &colormap, const bool is_rbox);
class ObjectDetector {
public:
explicit ObjectDetector(const YAML::Node &config_file) {
this->use_gpu_ = config_file["Global"]["use_gpu"].as<bool>();
if (config_file["Global"]["gpu_id"].IsDefined())
this->gpu_id_ = config_file["Global"]["gpu_id"].as<int>();
this->gpu_mem_ = config_file["Global"]["gpu_mem"].as<int>();
this->cpu_math_library_num_threads_ =
config_file["Global"]["cpu_num_threads"].as<int>();
this->use_mkldnn_ = config_file["Global"]["enable_mkldnn"].as<bool>();
this->use_tensorrt_ = config_file["Global"]["use_tensorrt"].as<bool>();
this->use_fp16_ = config_file["Global"]["use_fp16"].as<bool>();
this->model_dir_ =
config_file["Global"]["det_inference_model_dir"].as<std::string>();
this->nms_thres_ = config_file["Global"]["rec_nms_thresold"].as<float>();
this->threshold_ = config_file["Global"]["threshold"].as<float>();
this->max_det_results_ = config_file["Global"]["max_det_results"].as<int>();
this->image_shape_ =
config_file["Global"]["image_shape"].as<std::vector<int>>();
this->label_list_ =
config_file["Global"]["labe_list"].as<std::vector<std::string>>();
this->ir_optim_ = config_file["Global"]["ir_optim"].as<bool>();
this->batch_size_ = config_file["Global"]["batch_size"].as<int>();
preprocessor_.Init(config_file["DetPreProcess"]["transform_ops"]);
LoadModel(model_dir_, batch_size_, run_mode);
}
// Load Paddle inference model
void LoadModel(const std::string &model_dir, const int batch_size = 1,
const std::string &run_mode = "fluid");
// Run predictor
void Predict(const std::vector<cv::Mat> imgs, const int warmup = 0,
const int repeats = 1,
std::vector<ObjectResult> *result = nullptr,
std::vector<int> *bbox_num = nullptr,
std::vector<double> *times = nullptr);
const std::vector<std::string> &GetLabelList() const {
return this->label_list_;
}
const float &GetThreshold() const { return this->threshold_; }
private:
bool use_gpu_ = true;
int gpu_id_ = 0;
int gpu_mem_ = 800;
int cpu_math_library_num_threads_ = 6;
std::string run_mode = "fluid";
bool use_mkldnn_ = false;
bool use_tensorrt_ = false;
bool batch_size_ = 1;
bool use_fp16_ = false;
std::string model_dir_;
float nms_thres_ = 0.02;
float threshold_ = 0.5;
float max_det_results_ = 5;
std::vector<int> image_shape_ = {3, 640, 640};
std::vector<std::string> label_list_;
bool ir_optim_ = true;
bool det_permute_ = true;
bool det_postprocess_ = true;
int min_subgraph_size_ = 30;
bool use_dynamic_shape_ = false;
int trt_min_shape_ = 1;
int trt_max_shape_ = 1280;
int trt_opt_shape_ = 640;
bool trt_calib_mode_ = false;
// Preprocess image and copy data to input buffer
void Preprocess(const cv::Mat &image_mat);
// Postprocess result
void Postprocess(const std::vector<cv::Mat> mats,
std::vector<ObjectResult> *result, std::vector<int> bbox_num,
bool is_rbox);
std::shared_ptr<Predictor> predictor_;
Preprocessor preprocessor_;
ImageBlob inputs_;
std::vector<float> output_data_;
std::vector<int> out_bbox_num_data_;
};
} // namespace PaddleDetection
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <glog/logging.h>
#include <yaml-cpp/yaml.h>
#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
namespace PaddleDetection {
// Object for storing all preprocessed data
class ImageBlob {
public:
// image width and height
std::vector<float> im_shape_;
// Buffer for image data after preprocessing
std::vector<float> im_data_;
// in net data shape(after pad)
std::vector<float> in_net_shape_;
// Evaluation image width and height
// std::vector<float> eval_im_size_f_;
// Scale factor for image size to origin image size
std::vector<float> scale_factor_;
};
// Abstraction of preprocessing opration class
class PreprocessOp {
public:
virtual void Init(const YAML::Node &item) = 0;
virtual void Run(cv::Mat *im, ImageBlob *data) = 0;
};
class InitInfo : public PreprocessOp {
public:
virtual void Init(const YAML::Node &item) {}
virtual void Run(cv::Mat *im, ImageBlob *data);
};
class NormalizeImage : public PreprocessOp {
public:
virtual void Init(const YAML::Node &item) {
mean_ = item["mean"].as<std::vector<float>>();
scale_ = item["std"].as<std::vector<float>>();
is_scale_ = item["is_scale"].as<bool>();
}
virtual void Run(cv::Mat *im, ImageBlob *data);
private:
// CHW or HWC
std::vector<float> mean_;
std::vector<float> scale_;
bool is_scale_;
};
class Permute : public PreprocessOp {
public:
virtual void Init(const YAML::Node &item) {}
virtual void Run(cv::Mat *im, ImageBlob *data);
};
class Resize : public PreprocessOp {
public:
virtual void Init(const YAML::Node &item) {
interp_ = item["interp"].as<int>();
// max_size_ = item["target_size"].as<int>();
keep_ratio_ = item["keep_ratio"].as<bool>();
target_size_ = item["target_size"].as<std::vector<int>>();
}
// Compute best resize scale for x-dimension, y-dimension
std::pair<float, float> GenerateScale(const cv::Mat &im);
virtual void Run(cv::Mat *im, ImageBlob *data);
private:
int interp_;
bool keep_ratio_;
std::vector<int> target_size_;
std::vector<int> in_net_shape_;
};
// Models with FPN need input shape % stride == 0
class PadStride : public PreprocessOp {
public:
virtual void Init(const YAML::Node &item) {
stride_ = item["stride"].as<int>();
}
virtual void Run(cv::Mat *im, ImageBlob *data);
private:
int stride_;
};
class Preprocessor {
public:
void Init(const YAML::Node &config_node) {
// initialize image info at first
ops_["InitInfo"] = std::make_shared<InitInfo>();
for (int i = 0; i < config_node.size(); ++i) {
if (config_node[i]["DetResize"].IsDefined()) {
ops_["Resize"] = std::make_shared<Resize>();
ops_["Resize"]->Init(config_node[i]["DetResize"]);
}
if (config_node[i]["DetNormalizeImage"].IsDefined()) {
ops_["NormalizeImage"] = std::make_shared<NormalizeImage>();
ops_["NormalizeImage"]->Init(config_node[i]["DetNormalizeImage"]);
}
if (config_node[i]["DetPermute"].IsDefined()) {
ops_["Permute"] = std::make_shared<Permute>();
ops_["Permute"]->Init(config_node[i]["DetPermute"]);
}
if (config_node[i]["DetPadStrid"].IsDefined()) {
ops_["PadStride"] = std::make_shared<PadStride>();
ops_["PadStride"]->Init(config_node[i]["DetPadStrid"]);
}
}
}
void Run(cv::Mat *im, ImageBlob *data);
public:
static const std::vector<std::string> RUN_ORDER;
private:
std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
};
} // namespace PaddleDetection
......@@ -52,10 +52,12 @@ void Classifier::LoadModel(const std::string &model_path,
this->predictor_ = CreatePredictor(config);
}
double Classifier::Run(cv::Mat &img, std::vector<double> *times) {
void Classifier::Run(cv::Mat &img, std::vector<float> &out_data,
std::vector<double> &times) {
cv::Mat srcimg;
cv::Mat resize_img;
img.copyTo(srcimg);
std::vector<double> time;
auto preprocess_start = std::chrono::system_clock::now();
this->resize_op_.Run(img, resize_img, this->resize_short_,
......@@ -74,7 +76,6 @@ double Classifier::Run(cv::Mat &img, std::vector<double> *times) {
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> out_data;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
std::vector<int> output_shape = output_t->shape();
......@@ -85,27 +86,28 @@ double Classifier::Run(cv::Mat &img, std::vector<double> *times) {
output_t->CopyToCpu(out_data.data());
auto infer_end = std::chrono::system_clock::now();
auto postprocess_start = std::chrono::system_clock::now();
int maxPosition =
max_element(out_data.begin(), out_data.end()) - out_data.begin();
auto postprocess_end = std::chrono::system_clock::now();
// auto postprocess_start = std::chrono::system_clock::now();
// int maxPosition =
// max_element(out_data.begin(), out_data.end()) - out_data.begin();
// auto postprocess_end = std::chrono::system_clock::now();
std::chrono::duration<float> preprocess_diff =
preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
time.push_back(double(preprocess_diff.count()));
std::chrono::duration<float> inference_diff = infer_end - infer_start;
double inference_cost_time = double(inference_diff.count() * 1000);
times->push_back(inference_cost_time);
std::chrono::duration<float> postprocess_diff =
postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
std::cout << "result: " << std::endl;
std::cout << "\tclass id: " << maxPosition << std::endl;
std::cout << std::fixed << std::setprecision(10)
<< "\tscore: " << double(out_data[maxPosition]) << std::endl;
return inference_cost_time;
double inference_cost_time = double(inference_diff.count());
time.push_back(inference_cost_time);
// std::chrono::duration<float> postprocess_diff =
// postprocess_end - postprocess_start;
time.push_back(0);
// std::cout << "result: " << std::endl;
// std::cout << "\tclass id: " << maxPosition << std::endl;
// std::cout << std::fixed << std::setprecision(10)
// << "\tscore: " << double(out_data[maxPosition]) << std::endl;
times[0] += time[0];
times[1] += time[1];
times[2] += time[2];
}
} // namespace PaddleClas
......@@ -28,11 +28,104 @@
#include <auto_log/autolog.h>
#include <include/cls.h>
#include <include/object_detector.h>
#include <include/yaml_config.h>
using namespace std;
using namespace cv;
using namespace PaddleClas;
void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
const std::vector<std::string> &all_img_paths,
const int batch_size, PaddleDetection::ObjectDetector *det,
std::vector<PaddleDetection::ObjectResult> &im_result,
std::vector<int> &im_bbox_num, std::vector<double> &det_t,
const bool visual_det = false,
const bool run_benchmark = false,
const std::string &output_dir = "output") {
int steps = ceil(float(all_img_paths.size()) / batch_size);
// printf("total images = %d, batch_size = %d, total steps = %d\n",
// all_img_paths.size(), batch_size, steps);
for (int idx = 0; idx < steps; idx++) {
int left_image_cnt = all_img_paths.size() - idx * batch_size;
if (left_image_cnt > batch_size) {
left_image_cnt = batch_size;
}
// for (int bs = 0; bs < left_image_cnt; bs++) {
// std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
// cv::Mat im = cv::imread(image_file_path, 1);
// batch_imgs.insert(batch_imgs.end(), im);
// }
// Store all detected result
std::vector<PaddleDetection::ObjectResult> result;
std::vector<int> bbox_num;
std::vector<double> det_times;
bool is_rbox = false;
if (run_benchmark) {
det->Predict(batch_imgs, 10, 10, &result, &bbox_num, &det_times);
} else {
det->Predict(batch_imgs, 0, 1, &result, &bbox_num, &det_times);
// get labels and colormap
auto labels = det->GetLabelList();
auto colormap = PaddleDetection::GenerateColorMap(labels.size());
int item_start_idx = 0;
for (int i = 0; i < left_image_cnt; i++) {
cv::Mat im = batch_imgs[i];
int detect_num = 0;
for (int j = 0; j < bbox_num[i]; j++) {
PaddleDetection::ObjectResult item = result[item_start_idx + j];
if (item.confidence < det->GetThreshold() || item.class_id == -1) {
continue;
}
detect_num += 1;
im_result.push_back(item);
if (visual_det) {
if (item.rect.size() > 6) {
is_rbox = true;
printf(
"class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
item.class_id, item.confidence, item.rect[0], item.rect[1],
item.rect[2], item.rect[3], item.rect[4], item.rect[5],
item.rect[6], item.rect[7]);
} else {
printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
item.class_id, item.confidence, item.rect[0], item.rect[1],
item.rect[2], item.rect[3]);
}
}
}
im_bbox_num.push_back(detect_num);
item_start_idx = item_start_idx + bbox_num[i];
// Visualization result
if (visual_det) {
std::cout << all_img_paths.at(idx * batch_size + i)
<< " The number of detected box: " << detect_num
<< std::endl;
cv::Mat vis_img = PaddleDetection::VisualizeResult(
im, im_result, labels, colormap, is_rbox);
std::vector<int> compression_params;
compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
compression_params.push_back(95);
std::string output_path(output_dir);
if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
output_path += OS_PATH_SEP;
}
std::string image_file_path = all_img_paths.at(idx * batch_size + i);
output_path +=
image_file_path.substr(image_file_path.find_last_of('/') + 1);
cv::imwrite(output_path, vis_img, compression_params);
printf("Visualized output saved as %s\n", output_path.c_str());
}
}
}
det_t[0] += det_times[0];
det_t[1] += det_times[1];
det_t[2] += det_times[2];
}
}
int main(int argc, char **argv) {
if (argc != 2) {
......@@ -40,9 +133,24 @@ int main(int argc, char **argv) {
exit(1);
}
YamlConfig config(argv[1]);
PaddleClas::YamlConfig config(argv[1]);
config.PrintConfigInfo();
// config
const int batch_size = config.config_file["Global"]["batch_size"].as<int>();
bool visual_det = false;
if (config.config_file["Global"]["visual_det"].IsDefined()) {
visual_det = config.config_file["Global"]["visual_det"].as<bool>();
}
bool run_benchmark = false;
if (config.config_file["Global"]["benchmark"].IsDefined()) {
run_benchmark = config.config_file["Global"]["benchmark"].as<bool>();
}
int max_det_results = 5;
if (config.config_file["Global"]["max_det_results"].IsDefined()) {
max_det_results = config.config_file["Global"]["max_det_results"].as<int>();
}
std::string path =
config.config_file["Global"]["infer_imgs"].as<std::string>();
std::vector<std::string> img_files_list;
......@@ -58,10 +166,17 @@ int main(int argc, char **argv) {
std::cout << "img_file_list length: " << img_files_list.size() << std::endl;
Classifier classifier(config.config_file);
PaddleClas::Classifier classifier(config.config_file);
PaddleDetection::ObjectDetector detector(config.config_file);
double elapsed_time = 0.0;
std::vector<double> cls_times;
std::vector<double> cls_times = {0, 0, 0};
std::vector<double> det_times = {0, 0, 0};
std::vector<cv::Mat> batch_imgs;
std::vector<std::string> img_paths;
std::vector<PaddleDetection::ObjectResult> det_result;
std::vector<int> det_bbox_num;
int warmup_iter = img_files_list.size() > 5 ? 5 : 0;
for (int idx = 0; idx < img_files_list.size(); ++idx) {
std::string img_path = img_files_list[idx];
......@@ -71,19 +186,39 @@ int main(int argc, char **argv) {
<< "\n";
exit(-1);
}
cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);
double run_time = classifier.Run(srcimg, &cls_times);
if (idx >= warmup_iter) {
elapsed_time += run_time;
std::cout << "Current image path: " << img_path << std::endl;
std::cout << "Current time cost: " << run_time << " s, "
<< "average time cost in all: "
<< elapsed_time / (idx + 1 - warmup_iter) << " s." << std::endl;
} else {
std::cout << "Current time cost: " << run_time << " s." << std::endl;
batch_imgs.push_back(srcimg);
img_paths.push_back(img_path);
// step1: get all detection results
DetPredictImage(batch_imgs, img_paths, batch_size, &detector, det_result,
det_bbox_num, det_times, visual_det, run_benchmark);
// select max_det_results bbox
while (det_result.size() > max_det_results) {
det_result.pop_back();
}
// step2: add the whole image for recognition to improve recall
PaddleDetection::ObjectResult result_whole_img = {
{0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0};
det_result.push_back(result_whole_img);
det_bbox_num[0] = det_result.size() + 1;
// step3: recognition process, use score_thres to ensure accuracy
for (int j = 0; j < det_result.size(); ++j) {
int w = det_result[j].rect[2] - det_result[j].rect[0];
int h = det_result[j].rect[3] - det_result[j].rect[1];
cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
cv::Mat crop_img = srcimg(rect);
std::vector<float> feature;
classifier.Run(crop_img, feature, cls_times);
}
// double run_time = classifier.Run(srcimg, cls_times);
batch_imgs.clear();
img_paths.clear();
det_bbox_num.clear();
det_result.clear();
}
std::string presion = "fp32";
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include "include/object_detector.h"
#include <chrono>
#include <iomanip>
using namespace paddle_infer;
namespace PaddleDetection {
// Load Model and create model predictor
void ObjectDetector::LoadModel(const std::string &model_dir,
const int batch_size,
const std::string &run_mode) {
paddle_infer::Config config;
std::string prog_file = model_dir + OS_PATH_SEP + "inference.pdmodel";
std::string params_file = model_dir + OS_PATH_SEP + "inference.pdiparams";
config.SetModel(prog_file, params_file);
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
config.SwitchIrOptim(this->ir_optim_);
// // use tensorrt
// if (run_mode != "fluid") {
// auto precision = paddle_infer::Config::Precision::kFloat32;
// if (run_mode == "trt_fp32") {
// precision = paddle_infer::Config::Precision::kFloat32;
// }
// else if (run_mode == "trt_fp16") {
// precision = paddle_infer::Config::Precision::kHalf;
// }
// else if (run_mode == "trt_int8") {
// precision = paddle_infer::Config::Precision::kInt8;
// } else {
// printf("run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or
// 'trt_int8'");
// }
// set tensorrt
if (this->use_tensorrt_) {
config.EnableTensorRtEngine(
1 << 30, batch_size, this->min_subgraph_size_,
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
: paddle_infer::Config::Precision::kFloat32,
false, this->trt_calib_mode_);
// set use dynamic shape
if (this->use_dynamic_shape_) {
// set DynamicShsape for image tensor
const std::vector<int> min_input_shape = {1, 3, this->trt_min_shape_,
this->trt_min_shape_};
const std::vector<int> max_input_shape = {1, 3, this->trt_max_shape_,
this->trt_max_shape_};
const std::vector<int> opt_input_shape = {1, 3, this->trt_opt_shape_,
this->trt_opt_shape_};
const std::map<std::string, std::vector<int>> map_min_input_shape = {
{"image", min_input_shape}};
const std::map<std::string, std::vector<int>> map_max_input_shape = {
{"image", max_input_shape}};
const std::map<std::string, std::vector<int>> map_opt_input_shape = {
{"image", opt_input_shape}};
config.SetTRTDynamicShapeInfo(map_min_input_shape, map_max_input_shape,
map_opt_input_shape);
std::cout << "TensorRT dynamic shape enabled" << std::endl;
}
}
// } else if (this->device_ == "XPU"){
// config.EnableXpu(10*1024*1024);
} else {
config.DisableGpu();
if (this->use_mkldnn_) {
config.EnableMKLDNN();
// cache 10 different shapes for mkldnn to avoid memory leak
config.SetMkldnnCacheCapacity(10);
}
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
config.SwitchUseFeedFetchOps(false);
config.SwitchIrOptim(this->ir_optim_);
config.DisableGlogInfo();
// Memory optimization
config.EnableMemoryOptim();
predictor_ = std::move(CreatePredictor(config));
}
// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat &img,
const std::vector<ObjectResult> &results,
const std::vector<std::string> &lables,
const std::vector<int> &colormap,
const bool is_rbox = false) {
cv::Mat vis_img = img.clone();
for (int i = 0; i < results.size(); ++i) {
// Configure color and text size
std::ostringstream oss;
oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
oss << lables[results[i].class_id] << " ";
oss << results[i].confidence;
std::string text = oss.str();
int c1 = colormap[3 * results[i].class_id + 0];
int c2 = colormap[3 * results[i].class_id + 1];
int c3 = colormap[3 * results[i].class_id + 2];
cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
double font_scale = 0.5f;
float thickness = 0.5;
cv::Size text_size =
cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
cv::Point origin;
if (is_rbox) {
// Draw object, text, and background
for (int k = 0; k < 4; k++) {
cv::Point pt1 = cv::Point(results[i].rect[(k * 2) % 8],
results[i].rect[(k * 2 + 1) % 8]);
cv::Point pt2 = cv::Point(results[i].rect[(k * 2 + 2) % 8],
results[i].rect[(k * 2 + 3) % 8]);
cv::line(vis_img, pt1, pt2, roi_color, 2);
}
} else {
int w = results[i].rect[2] - results[i].rect[0];
int h = results[i].rect[3] - results[i].rect[1];
cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[1], w, h);
// Draw roi object, text, and background
cv::rectangle(vis_img, roi, roi_color, 2);
}
origin.x = results[i].rect[0];
origin.y = results[i].rect[1];
// Configure text background
cv::Rect text_back =
cv::Rect(results[i].rect[0], results[i].rect[1] - text_size.height,
text_size.width, text_size.height);
// Draw text, and background
cv::rectangle(vis_img, text_back, roi_color, -1);
cv::putText(vis_img, text, origin, font_face, font_scale,
cv::Scalar(255, 255, 255), thickness);
}
return vis_img;
}
void ObjectDetector::Preprocess(const cv::Mat &ori_im) {
// Clone the image : keep the original mat for postprocess
cv::Mat im = ori_im.clone();
cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
preprocessor_.Run(&im, &inputs_);
}
void ObjectDetector::Postprocess(const std::vector<cv::Mat> mats,
std::vector<ObjectResult> *result,
std::vector<int> bbox_num,
bool is_rbox = false) {
result->clear();
int start_idx = 0;
for (int im_id = 0; im_id < mats.size(); im_id++) {
cv::Mat raw_mat = mats[im_id];
int rh = 1;
int rw = 1;
// if (config_.arch_ == "Face") {
// rh = raw_mat.rows;
// rw = raw_mat.cols;
// }
for (int j = start_idx; j < start_idx + bbox_num[im_id]; j++) {
if (is_rbox) {
// Class id
int class_id = static_cast<int>(round(output_data_[0 + j * 10]));
// Confidence score
float score = output_data_[1 + j * 10];
int x1 = (output_data_[2 + j * 10] * rw);
int y1 = (output_data_[3 + j * 10] * rh);
int x2 = (output_data_[4 + j * 10] * rw);
int y2 = (output_data_[5 + j * 10] * rh);
int x3 = (output_data_[6 + j * 10] * rw);
int y3 = (output_data_[7 + j * 10] * rh);
int x4 = (output_data_[8 + j * 10] * rw);
int y4 = (output_data_[9 + j * 10] * rh);
ObjectResult result_item;
result_item.rect = {x1, y1, x2, y2, x3, y3, x4, y4};
result_item.class_id = class_id;
result_item.confidence = score;
result->push_back(result_item);
} else {
// Class id
int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
// Confidence score
float score = output_data_[1 + j * 6];
int xmin = (output_data_[2 + j * 6] * rw);
int ymin = (output_data_[3 + j * 6] * rh);
int xmax = (output_data_[4 + j * 6] * rw);
int ymax = (output_data_[5 + j * 6] * rh);
int wd = xmax - xmin;
int hd = ymax - ymin;
ObjectResult result_item;
result_item.rect = {xmin, ymin, xmax, ymax};
result_item.class_id = class_id;
result_item.confidence = score;
result->push_back(result_item);
}
}
start_idx += bbox_num[im_id];
}
}
void ObjectDetector::Predict(const std::vector<cv::Mat> imgs, const int warmup,
const int repeats,
std::vector<ObjectResult> *result,
std::vector<int> *bbox_num,
std::vector<double> *times) {
auto preprocess_start = std::chrono::steady_clock::now();
int batch_size = imgs.size();
// in_data_batch
std::vector<float> in_data_all;
std::vector<float> im_shape_all(batch_size * 2);
std::vector<float> scale_factor_all(batch_size * 2);
// Preprocess image
for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
cv::Mat im = imgs.at(bs_idx);
Preprocess(im);
im_shape_all[bs_idx * 2] = inputs_.im_shape_[0];
im_shape_all[bs_idx * 2 + 1] = inputs_.im_shape_[1];
scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0];
scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1];
// TODO: reduce cost time
in_data_all.insert(in_data_all.end(), inputs_.im_data_.begin(),
inputs_.im_data_.end());
}
// Prepare input tensor
auto input_names = predictor_->GetInputNames();
for (const auto &tensor_name : input_names) {
auto in_tensor = predictor_->GetInputHandle(tensor_name);
if (tensor_name == "image") {
int rh = inputs_.in_net_shape_[0];
int rw = inputs_.in_net_shape_[1];
in_tensor->Reshape({batch_size, 3, rh, rw});
in_tensor->CopyFromCpu(in_data_all.data());
} else if (tensor_name == "im_shape") {
in_tensor->Reshape({batch_size, 2});
in_tensor->CopyFromCpu(im_shape_all.data());
} else if (tensor_name == "scale_factor") {
in_tensor->Reshape({batch_size, 2});
in_tensor->CopyFromCpu(scale_factor_all.data());
}
}
auto preprocess_end = std::chrono::steady_clock::now();
// Run predictor
// warmup
for (int i = 0; i < warmup; i++) {
predictor_->Run();
// Get output tensor
auto output_names = predictor_->GetOutputNames();
auto out_tensor = predictor_->GetOutputHandle(output_names[0]);
std::vector<int> output_shape = out_tensor->shape();
auto out_bbox_num = predictor_->GetOutputHandle(output_names[1]);
std::vector<int> out_bbox_num_shape = out_bbox_num->shape();
// Calculate output length
int output_size = 1;
for (int j = 0; j < output_shape.size(); ++j) {
output_size *= output_shape[j];
}
if (output_size < 6) {
std::cerr << "[WARNING] No object detected." << std::endl;
}
output_data_.resize(output_size);
out_tensor->CopyToCpu(output_data_.data());
int out_bbox_num_size = 1;
for (int j = 0; j < out_bbox_num_shape.size(); ++j) {
out_bbox_num_size *= out_bbox_num_shape[j];
}
out_bbox_num_data_.resize(out_bbox_num_size);
out_bbox_num->CopyToCpu(out_bbox_num_data_.data());
}
bool is_rbox = false;
auto inference_start = std::chrono::steady_clock::now();
for (int i = 0; i < repeats; i++) {
predictor_->Run();
// Get output tensor
auto output_names = predictor_->GetOutputNames();
auto out_tensor = predictor_->GetOutputHandle(output_names[0]);
std::vector<int> output_shape = out_tensor->shape();
auto out_bbox_num = predictor_->GetOutputHandle(output_names[1]);
std::vector<int> out_bbox_num_shape = out_bbox_num->shape();
// Calculate output length
int output_size = 1;
for (int j = 0; j < output_shape.size(); ++j) {
output_size *= output_shape[j];
}
is_rbox = output_shape[output_shape.size() - 1] % 10 == 0;
if (output_size < 6) {
std::cerr << "[WARNING] No object detected." << std::endl;
}
output_data_.resize(output_size);
out_tensor->CopyToCpu(output_data_.data());
int out_bbox_num_size = 1;
for (int j = 0; j < out_bbox_num_shape.size(); ++j) {
out_bbox_num_size *= out_bbox_num_shape[j];
}
out_bbox_num_data_.resize(out_bbox_num_size);
out_bbox_num->CopyToCpu(out_bbox_num_data_.data());
}
auto inference_end = std::chrono::steady_clock::now();
auto postprocess_start = std::chrono::steady_clock::now();
// Postprocessing result
result->clear();
Postprocess(imgs, result, out_bbox_num_data_, is_rbox);
bbox_num->clear();
for (int k = 0; k < out_bbox_num_data_.size(); k++) {
int tmp = out_bbox_num_data_[k];
bbox_num->push_back(tmp);
}
auto postprocess_end = std::chrono::steady_clock::now();
std::chrono::duration<float> preprocess_diff =
preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
std::chrono::duration<float> inference_diff = inference_end - inference_start;
times->push_back(double(inference_diff.count() / repeats * 1000));
std::chrono::duration<float> postprocess_diff =
postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
}
std::vector<int> GenerateColorMap(int num_class) {
auto colormap = std::vector<int>(3 * num_class, 0);
for (int i = 0; i < num_class; ++i) {
int j = 0;
int lab = i;
while (lab) {
colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
++j;
lab >>= 3;
}
}
return colormap;
}
} // namespace PaddleDetection
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "include/preprocess_op_det.h"
namespace PaddleDetection {
void InitInfo::Run(cv::Mat *im, ImageBlob *data) {
data->im_shape_ = {static_cast<float>(im->rows),
static_cast<float>(im->cols)};
data->scale_factor_ = {1., 1.};
data->in_net_shape_ = {static_cast<float>(im->rows),
static_cast<float>(im->cols)};
}
void NormalizeImage::Run(cv::Mat *im, ImageBlob *data) {
double e = 1.0;
if (is_scale_) {
e /= 255.0;
}
(*im).convertTo(*im, CV_32FC3, e);
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
(im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / scale_[0];
im->at<cv::Vec3f>(h, w)[1] =
(im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / scale_[1];
im->at<cv::Vec3f>(h, w)[2] =
(im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / scale_[2];
}
}
}
void Permute::Run(cv::Mat *im, ImageBlob *data) {
int rh = im->rows;
int rw = im->cols;
int rc = im->channels();
(data->im_data_).resize(rc * rh * rw);
float *base = (data->im_data_).data();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
}
}
void Resize::Run(cv::Mat *im, ImageBlob *data) {
auto resize_scale = GenerateScale(*im);
data->im_shape_ = {static_cast<float>(im->cols * resize_scale.first),
static_cast<float>(im->rows * resize_scale.second)};
data->in_net_shape_ = {static_cast<float>(im->cols * resize_scale.first),
static_cast<float>(im->rows * resize_scale.second)};
cv::resize(*im, *im, cv::Size(), resize_scale.first, resize_scale.second,
interp_);
data->im_shape_ = {
static_cast<float>(im->rows), static_cast<float>(im->cols),
};
data->scale_factor_ = {
resize_scale.second, resize_scale.first,
};
}
std::pair<float, float> Resize::GenerateScale(const cv::Mat &im) {
std::pair<float, float> resize_scale;
int origin_w = im.cols;
int origin_h = im.rows;
if (keep_ratio_) {
int im_size_max = std::max(origin_w, origin_h);
int im_size_min = std::min(origin_w, origin_h);
int target_size_max =
*std::max_element(target_size_.begin(), target_size_.end());
int target_size_min =
*std::min_element(target_size_.begin(), target_size_.end());
float scale_min =
static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
float scale_max =
static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
float scale_ratio = std::min(scale_min, scale_max);
resize_scale = {scale_ratio, scale_ratio};
} else {
resize_scale.first =
static_cast<float>(target_size_[1]) / static_cast<float>(origin_w);
resize_scale.second =
static_cast<float>(target_size_[0]) / static_cast<float>(origin_h);
}
return resize_scale;
}
void PadStride::Run(cv::Mat *im, ImageBlob *data) {
if (stride_ <= 0) {
return;
}
int rc = im->channels();
int rh = im->rows;
int rw = im->cols;
int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
cv::copyMakeBorder(*im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT,
cv::Scalar(0));
data->in_net_shape_ = {
static_cast<float>(im->rows), static_cast<float>(im->cols),
};
}
// Preprocessor op running order
const std::vector<std::string> Preprocessor::RUN_ORDER = {
"InitInfo", "Resize", "NormalizeImage", "PadStride", "Permute"};
void Preprocessor::Run(cv::Mat *im, ImageBlob *data) {
for (const auto &name : RUN_ORDER) {
if (ops_.find(name) != ops_.end()) {
ops_[name]->Run(im, data);
}
}
}
} // namespace PaddleDetection
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册