Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
b3446197
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b3446197
编写于
11月 04, 2021
作者:
D
dongshuilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add detect infer for pp_shitu cpp infer
上级
a2875ffd
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
960 addition
and
35 deletion
+960
-35
deploy/cpp_shitu/include/cls.h
deploy/cpp_shitu/include/cls.h
+3
-2
deploy/cpp_shitu/include/object_detector.h
deploy/cpp_shitu/include/object_detector.h
+137
-0
deploy/cpp_shitu/include/preprocess_op_det.h
deploy/cpp_shitu/include/preprocess_op_det.h
+155
-0
deploy/cpp_shitu/src/cls.cpp
deploy/cpp_shitu/src/cls.cpp
+21
-19
deploy/cpp_shitu/src/main.cpp
deploy/cpp_shitu/src/main.cpp
+149
-14
deploy/cpp_shitu/src/object_detector.cpp
deploy/cpp_shitu/src/object_detector.cpp
+365
-0
deploy/cpp_shitu/src/preprocess_op_det.cpp
deploy/cpp_shitu/src/preprocess_op_det.cpp
+130
-0
未找到文件。
deploy/cpp_shitu/include/cls.h
浏览文件 @
b3446197
...
...
@@ -76,11 +76,12 @@ public:
void
LoadModel
(
const
std
::
string
&
model_path
,
const
std
::
string
&
params_path
);
// Run predictor
double
Run
(
cv
::
Mat
&
img
,
std
::
vector
<
double
>
*
times
);
void
Run
(
cv
::
Mat
&
img
,
std
::
vector
<
float
>
&
out_data
,
std
::
vector
<
double
>
&
times
);
private:
std
::
shared_ptr
<
Predictor
>
predictor_
;
private:
bool
use_gpu_
=
false
;
int
gpu_id_
=
0
;
int
gpu_mem_
=
4000
;
...
...
deploy/cpp_shitu/include/object_detector.h
0 → 100644
浏览文件 @
b3446197
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "paddle_inference_api.h" // NOLINT
#include "include/preprocess_op_det.h"
#include "include/yaml_config.h"
using
namespace
paddle_infer
;
namespace
PaddleDetection
{
// Object Detection Result
struct
ObjectResult
{
// Rectangle coordinates of detected object: left, right, top, down
std
::
vector
<
int
>
rect
;
// Class id of detected object
int
class_id
;
// Confidence of detected object
float
confidence
;
};
// Generate visualization colormap for each class
std
::
vector
<
int
>
GenerateColorMap
(
int
num_class
);
// Visualiztion Detection Result
cv
::
Mat
VisualizeResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
ObjectResult
>
&
results
,
const
std
::
vector
<
std
::
string
>
&
lables
,
const
std
::
vector
<
int
>
&
colormap
,
const
bool
is_rbox
);
class
ObjectDetector
{
public:
explicit
ObjectDetector
(
const
YAML
::
Node
&
config_file
)
{
this
->
use_gpu_
=
config_file
[
"Global"
][
"use_gpu"
].
as
<
bool
>
();
if
(
config_file
[
"Global"
][
"gpu_id"
].
IsDefined
())
this
->
gpu_id_
=
config_file
[
"Global"
][
"gpu_id"
].
as
<
int
>
();
this
->
gpu_mem_
=
config_file
[
"Global"
][
"gpu_mem"
].
as
<
int
>
();
this
->
cpu_math_library_num_threads_
=
config_file
[
"Global"
][
"cpu_num_threads"
].
as
<
int
>
();
this
->
use_mkldnn_
=
config_file
[
"Global"
][
"enable_mkldnn"
].
as
<
bool
>
();
this
->
use_tensorrt_
=
config_file
[
"Global"
][
"use_tensorrt"
].
as
<
bool
>
();
this
->
use_fp16_
=
config_file
[
"Global"
][
"use_fp16"
].
as
<
bool
>
();
this
->
model_dir_
=
config_file
[
"Global"
][
"det_inference_model_dir"
].
as
<
std
::
string
>
();
this
->
nms_thres_
=
config_file
[
"Global"
][
"rec_nms_thresold"
].
as
<
float
>
();
this
->
threshold_
=
config_file
[
"Global"
][
"threshold"
].
as
<
float
>
();
this
->
max_det_results_
=
config_file
[
"Global"
][
"max_det_results"
].
as
<
int
>
();
this
->
image_shape_
=
config_file
[
"Global"
][
"image_shape"
].
as
<
std
::
vector
<
int
>>
();
this
->
label_list_
=
config_file
[
"Global"
][
"labe_list"
].
as
<
std
::
vector
<
std
::
string
>>
();
this
->
ir_optim_
=
config_file
[
"Global"
][
"ir_optim"
].
as
<
bool
>
();
this
->
batch_size_
=
config_file
[
"Global"
][
"batch_size"
].
as
<
int
>
();
preprocessor_
.
Init
(
config_file
[
"DetPreProcess"
][
"transform_ops"
]);
LoadModel
(
model_dir_
,
batch_size_
,
run_mode
);
}
// Load Paddle inference model
void
LoadModel
(
const
std
::
string
&
model_dir
,
const
int
batch_size
=
1
,
const
std
::
string
&
run_mode
=
"fluid"
);
// Run predictor
void
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
const
int
warmup
=
0
,
const
int
repeats
=
1
,
std
::
vector
<
ObjectResult
>
*
result
=
nullptr
,
std
::
vector
<
int
>
*
bbox_num
=
nullptr
,
std
::
vector
<
double
>
*
times
=
nullptr
);
const
std
::
vector
<
std
::
string
>
&
GetLabelList
()
const
{
return
this
->
label_list_
;
}
const
float
&
GetThreshold
()
const
{
return
this
->
threshold_
;
}
private:
bool
use_gpu_
=
true
;
int
gpu_id_
=
0
;
int
gpu_mem_
=
800
;
int
cpu_math_library_num_threads_
=
6
;
std
::
string
run_mode
=
"fluid"
;
bool
use_mkldnn_
=
false
;
bool
use_tensorrt_
=
false
;
bool
batch_size_
=
1
;
bool
use_fp16_
=
false
;
std
::
string
model_dir_
;
float
nms_thres_
=
0.02
;
float
threshold_
=
0.5
;
float
max_det_results_
=
5
;
std
::
vector
<
int
>
image_shape_
=
{
3
,
640
,
640
};
std
::
vector
<
std
::
string
>
label_list_
;
bool
ir_optim_
=
true
;
bool
det_permute_
=
true
;
bool
det_postprocess_
=
true
;
int
min_subgraph_size_
=
30
;
bool
use_dynamic_shape_
=
false
;
int
trt_min_shape_
=
1
;
int
trt_max_shape_
=
1280
;
int
trt_opt_shape_
=
640
;
bool
trt_calib_mode_
=
false
;
// Preprocess image and copy data to input buffer
void
Preprocess
(
const
cv
::
Mat
&
image_mat
);
// Postprocess result
void
Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
ObjectResult
>
*
result
,
std
::
vector
<
int
>
bbox_num
,
bool
is_rbox
);
std
::
shared_ptr
<
Predictor
>
predictor_
;
Preprocessor
preprocessor_
;
ImageBlob
inputs_
;
std
::
vector
<
float
>
output_data_
;
std
::
vector
<
int
>
out_bbox_num_data_
;
};
}
// namespace PaddleDetection
deploy/cpp_shitu/include/preprocess_op_det.h
0 → 100644
浏览文件 @
b3446197
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <glog/logging.h>
#include <yaml-cpp/yaml.h>
#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
namespace
PaddleDetection
{
// Object for storing all preprocessed data
class
ImageBlob
{
public:
// image width and height
std
::
vector
<
float
>
im_shape_
;
// Buffer for image data after preprocessing
std
::
vector
<
float
>
im_data_
;
// in net data shape(after pad)
std
::
vector
<
float
>
in_net_shape_
;
// Evaluation image width and height
// std::vector<float> eval_im_size_f_;
// Scale factor for image size to origin image size
std
::
vector
<
float
>
scale_factor_
;
};
// Abstraction of preprocessing opration class
class
PreprocessOp
{
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
)
=
0
;
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
=
0
;
};
class
InitInfo
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
};
class
NormalizeImage
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{
mean_
=
item
[
"mean"
].
as
<
std
::
vector
<
float
>>
();
scale_
=
item
[
"std"
].
as
<
std
::
vector
<
float
>>
();
is_scale_
=
item
[
"is_scale"
].
as
<
bool
>
();
}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
private:
// CHW or HWC
std
::
vector
<
float
>
mean_
;
std
::
vector
<
float
>
scale_
;
bool
is_scale_
;
};
class
Permute
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
};
class
Resize
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{
interp_
=
item
[
"interp"
].
as
<
int
>
();
// max_size_ = item["target_size"].as<int>();
keep_ratio_
=
item
[
"keep_ratio"
].
as
<
bool
>
();
target_size_
=
item
[
"target_size"
].
as
<
std
::
vector
<
int
>>
();
}
// Compute best resize scale for x-dimension, y-dimension
std
::
pair
<
float
,
float
>
GenerateScale
(
const
cv
::
Mat
&
im
);
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
private:
int
interp_
;
bool
keep_ratio_
;
std
::
vector
<
int
>
target_size_
;
std
::
vector
<
int
>
in_net_shape_
;
};
// Models with FPN need input shape % stride == 0
class
PadStride
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{
stride_
=
item
[
"stride"
].
as
<
int
>
();
}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
private:
int
stride_
;
};
class
Preprocessor
{
public:
void
Init
(
const
YAML
::
Node
&
config_node
)
{
// initialize image info at first
ops_
[
"InitInfo"
]
=
std
::
make_shared
<
InitInfo
>
();
for
(
int
i
=
0
;
i
<
config_node
.
size
();
++
i
)
{
if
(
config_node
[
i
][
"DetResize"
].
IsDefined
())
{
ops_
[
"Resize"
]
=
std
::
make_shared
<
Resize
>
();
ops_
[
"Resize"
]
->
Init
(
config_node
[
i
][
"DetResize"
]);
}
if
(
config_node
[
i
][
"DetNormalizeImage"
].
IsDefined
())
{
ops_
[
"NormalizeImage"
]
=
std
::
make_shared
<
NormalizeImage
>
();
ops_
[
"NormalizeImage"
]
->
Init
(
config_node
[
i
][
"DetNormalizeImage"
]);
}
if
(
config_node
[
i
][
"DetPermute"
].
IsDefined
())
{
ops_
[
"Permute"
]
=
std
::
make_shared
<
Permute
>
();
ops_
[
"Permute"
]
->
Init
(
config_node
[
i
][
"DetPermute"
]);
}
if
(
config_node
[
i
][
"DetPadStrid"
].
IsDefined
())
{
ops_
[
"PadStride"
]
=
std
::
make_shared
<
PadStride
>
();
ops_
[
"PadStride"
]
->
Init
(
config_node
[
i
][
"DetPadStrid"
]);
}
}
}
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
public:
static
const
std
::
vector
<
std
::
string
>
RUN_ORDER
;
private:
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
PreprocessOp
>>
ops_
;
};
}
// namespace PaddleDetection
deploy/cpp_shitu/src/cls.cpp
浏览文件 @
b3446197
...
...
@@ -52,10 +52,12 @@ void Classifier::LoadModel(const std::string &model_path,
this
->
predictor_
=
CreatePredictor
(
config
);
}
double
Classifier
::
Run
(
cv
::
Mat
&
img
,
std
::
vector
<
double
>
*
times
)
{
void
Classifier
::
Run
(
cv
::
Mat
&
img
,
std
::
vector
<
float
>
&
out_data
,
std
::
vector
<
double
>
&
times
)
{
cv
::
Mat
srcimg
;
cv
::
Mat
resize_img
;
img
.
copyTo
(
srcimg
);
std
::
vector
<
double
>
time
;
auto
preprocess_start
=
std
::
chrono
::
system_clock
::
now
();
this
->
resize_op_
.
Run
(
img
,
resize_img
,
this
->
resize_short_
,
...
...
@@ -74,7 +76,6 @@ double Classifier::Run(cv::Mat &img, std::vector<double> *times) {
input_t
->
CopyFromCpu
(
input
.
data
());
this
->
predictor_
->
Run
();
std
::
vector
<
float
>
out_data
;
auto
output_names
=
this
->
predictor_
->
GetOutputNames
();
auto
output_t
=
this
->
predictor_
->
GetOutputHandle
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
output_t
->
shape
();
...
...
@@ -85,27 +86,28 @@ double Classifier::Run(cv::Mat &img, std::vector<double> *times) {
output_t
->
CopyToCpu
(
out_data
.
data
());
auto
infer_end
=
std
::
chrono
::
system_clock
::
now
();
auto
postprocess_start
=
std
::
chrono
::
system_clock
::
now
();
int
maxPosition
=
max_element
(
out_data
.
begin
(),
out_data
.
end
())
-
out_data
.
begin
();
auto
postprocess_end
=
std
::
chrono
::
system_clock
::
now
();
//
auto postprocess_start = std::chrono::system_clock::now();
//
int maxPosition =
//
max_element(out_data.begin(), out_data.end()) - out_data.begin();
//
auto postprocess_end = std::chrono::system_clock::now();
std
::
chrono
::
duration
<
float
>
preprocess_diff
=
preprocess_end
-
preprocess_start
;
time
s
->
push_back
(
double
(
preprocess_diff
.
count
()
*
1000
));
time
.
push_back
(
double
(
preprocess_diff
.
count
()
));
std
::
chrono
::
duration
<
float
>
inference_diff
=
infer_end
-
infer_start
;
double
inference_cost_time
=
double
(
inference_diff
.
count
()
*
1000
);
times
->
push_back
(
inference_cost_time
);
std
::
chrono
::
duration
<
float
>
postprocess_diff
=
postprocess_end
-
postprocess_start
;
times
->
push_back
(
double
(
postprocess_diff
.
count
()
*
1000
));
std
::
cout
<<
"result: "
<<
std
::
endl
;
std
::
cout
<<
"
\t
class id: "
<<
maxPosition
<<
std
::
endl
;
std
::
cout
<<
std
::
fixed
<<
std
::
setprecision
(
10
)
<<
"
\t
score: "
<<
double
(
out_data
[
maxPosition
])
<<
std
::
endl
;
return
inference_cost_time
;
double
inference_cost_time
=
double
(
inference_diff
.
count
());
time
.
push_back
(
inference_cost_time
);
// std::chrono::duration<float> postprocess_diff =
// postprocess_end - postprocess_start;
time
.
push_back
(
0
);
// std::cout << "result: " << std::endl;
// std::cout << "\tclass id: " << maxPosition << std::endl;
// std::cout << std::fixed << std::setprecision(10)
// << "\tscore: " << double(out_data[maxPosition]) << std::endl;
times
[
0
]
+=
time
[
0
];
times
[
1
]
+=
time
[
1
];
times
[
2
]
+=
time
[
2
];
}
}
// namespace PaddleClas
deploy/cpp_shitu/src/main.cpp
浏览文件 @
b3446197
...
...
@@ -28,11 +28,104 @@
#include <auto_log/autolog.h>
#include <include/cls.h>
#include <include/object_detector.h>
#include <include/yaml_config.h>
using
namespace
std
;
using
namespace
cv
;
using
namespace
PaddleClas
;
void
DetPredictImage
(
const
std
::
vector
<
cv
::
Mat
>
&
batch_imgs
,
const
std
::
vector
<
std
::
string
>
&
all_img_paths
,
const
int
batch_size
,
PaddleDetection
::
ObjectDetector
*
det
,
std
::
vector
<
PaddleDetection
::
ObjectResult
>
&
im_result
,
std
::
vector
<
int
>
&
im_bbox_num
,
std
::
vector
<
double
>
&
det_t
,
const
bool
visual_det
=
false
,
const
bool
run_benchmark
=
false
,
const
std
::
string
&
output_dir
=
"output"
)
{
int
steps
=
ceil
(
float
(
all_img_paths
.
size
())
/
batch_size
);
// printf("total images = %d, batch_size = %d, total steps = %d\n",
// all_img_paths.size(), batch_size, steps);
for
(
int
idx
=
0
;
idx
<
steps
;
idx
++
)
{
int
left_image_cnt
=
all_img_paths
.
size
()
-
idx
*
batch_size
;
if
(
left_image_cnt
>
batch_size
)
{
left_image_cnt
=
batch_size
;
}
// for (int bs = 0; bs < left_image_cnt; bs++) {
// std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
// cv::Mat im = cv::imread(image_file_path, 1);
// batch_imgs.insert(batch_imgs.end(), im);
// }
// Store all detected result
std
::
vector
<
PaddleDetection
::
ObjectResult
>
result
;
std
::
vector
<
int
>
bbox_num
;
std
::
vector
<
double
>
det_times
;
bool
is_rbox
=
false
;
if
(
run_benchmark
)
{
det
->
Predict
(
batch_imgs
,
10
,
10
,
&
result
,
&
bbox_num
,
&
det_times
);
}
else
{
det
->
Predict
(
batch_imgs
,
0
,
1
,
&
result
,
&
bbox_num
,
&
det_times
);
// get labels and colormap
auto
labels
=
det
->
GetLabelList
();
auto
colormap
=
PaddleDetection
::
GenerateColorMap
(
labels
.
size
());
int
item_start_idx
=
0
;
for
(
int
i
=
0
;
i
<
left_image_cnt
;
i
++
)
{
cv
::
Mat
im
=
batch_imgs
[
i
];
int
detect_num
=
0
;
for
(
int
j
=
0
;
j
<
bbox_num
[
i
];
j
++
)
{
PaddleDetection
::
ObjectResult
item
=
result
[
item_start_idx
+
j
];
if
(
item
.
confidence
<
det
->
GetThreshold
()
||
item
.
class_id
==
-
1
)
{
continue
;
}
detect_num
+=
1
;
im_result
.
push_back
(
item
);
if
(
visual_det
)
{
if
(
item
.
rect
.
size
()
>
6
)
{
is_rbox
=
true
;
printf
(
"class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]
\n
"
,
item
.
class_id
,
item
.
confidence
,
item
.
rect
[
0
],
item
.
rect
[
1
],
item
.
rect
[
2
],
item
.
rect
[
3
],
item
.
rect
[
4
],
item
.
rect
[
5
],
item
.
rect
[
6
],
item
.
rect
[
7
]);
}
else
{
printf
(
"class=%d confidence=%.4f rect=[%d %d %d %d]
\n
"
,
item
.
class_id
,
item
.
confidence
,
item
.
rect
[
0
],
item
.
rect
[
1
],
item
.
rect
[
2
],
item
.
rect
[
3
]);
}
}
}
im_bbox_num
.
push_back
(
detect_num
);
item_start_idx
=
item_start_idx
+
bbox_num
[
i
];
// Visualization result
if
(
visual_det
)
{
std
::
cout
<<
all_img_paths
.
at
(
idx
*
batch_size
+
i
)
<<
" The number of detected box: "
<<
detect_num
<<
std
::
endl
;
cv
::
Mat
vis_img
=
PaddleDetection
::
VisualizeResult
(
im
,
im_result
,
labels
,
colormap
,
is_rbox
);
std
::
vector
<
int
>
compression_params
;
compression_params
.
push_back
(
CV_IMWRITE_JPEG_QUALITY
);
compression_params
.
push_back
(
95
);
std
::
string
output_path
(
output_dir
);
if
(
output_dir
.
rfind
(
OS_PATH_SEP
)
!=
output_dir
.
size
()
-
1
)
{
output_path
+=
OS_PATH_SEP
;
}
std
::
string
image_file_path
=
all_img_paths
.
at
(
idx
*
batch_size
+
i
);
output_path
+=
image_file_path
.
substr
(
image_file_path
.
find_last_of
(
'/'
)
+
1
);
cv
::
imwrite
(
output_path
,
vis_img
,
compression_params
);
printf
(
"Visualized output saved as %s
\n
"
,
output_path
.
c_str
());
}
}
}
det_t
[
0
]
+=
det_times
[
0
];
det_t
[
1
]
+=
det_times
[
1
];
det_t
[
2
]
+=
det_times
[
2
];
}
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
!=
2
)
{
...
...
@@ -40,9 +133,24 @@ int main(int argc, char **argv) {
exit
(
1
);
}
YamlConfig
config
(
argv
[
1
]);
PaddleClas
::
YamlConfig
config
(
argv
[
1
]);
config
.
PrintConfigInfo
();
// config
const
int
batch_size
=
config
.
config_file
[
"Global"
][
"batch_size"
].
as
<
int
>
();
bool
visual_det
=
false
;
if
(
config
.
config_file
[
"Global"
][
"visual_det"
].
IsDefined
())
{
visual_det
=
config
.
config_file
[
"Global"
][
"visual_det"
].
as
<
bool
>
();
}
bool
run_benchmark
=
false
;
if
(
config
.
config_file
[
"Global"
][
"benchmark"
].
IsDefined
())
{
run_benchmark
=
config
.
config_file
[
"Global"
][
"benchmark"
].
as
<
bool
>
();
}
int
max_det_results
=
5
;
if
(
config
.
config_file
[
"Global"
][
"max_det_results"
].
IsDefined
())
{
max_det_results
=
config
.
config_file
[
"Global"
][
"max_det_results"
].
as
<
int
>
();
}
std
::
string
path
=
config
.
config_file
[
"Global"
][
"infer_imgs"
].
as
<
std
::
string
>
();
std
::
vector
<
std
::
string
>
img_files_list
;
...
...
@@ -58,10 +166,17 @@ int main(int argc, char **argv) {
std
::
cout
<<
"img_file_list length: "
<<
img_files_list
.
size
()
<<
std
::
endl
;
Classifier
classifier
(
config
.
config_file
);
PaddleClas
::
Classifier
classifier
(
config
.
config_file
);
PaddleDetection
::
ObjectDetector
detector
(
config
.
config_file
);
double
elapsed_time
=
0.0
;
std
::
vector
<
double
>
cls_times
;
std
::
vector
<
double
>
cls_times
=
{
0
,
0
,
0
};
std
::
vector
<
double
>
det_times
=
{
0
,
0
,
0
};
std
::
vector
<
cv
::
Mat
>
batch_imgs
;
std
::
vector
<
std
::
string
>
img_paths
;
std
::
vector
<
PaddleDetection
::
ObjectResult
>
det_result
;
std
::
vector
<
int
>
det_bbox_num
;
int
warmup_iter
=
img_files_list
.
size
()
>
5
?
5
:
0
;
for
(
int
idx
=
0
;
idx
<
img_files_list
.
size
();
++
idx
)
{
std
::
string
img_path
=
img_files_list
[
idx
];
...
...
@@ -71,19 +186,39 @@ int main(int argc, char **argv) {
<<
"
\n
"
;
exit
(
-
1
);
}
cv
::
cvtColor
(
srcimg
,
srcimg
,
cv
::
COLOR_BGR2RGB
);
double
run_time
=
classifier
.
Run
(
srcimg
,
&
cls_times
);
if
(
idx
>=
warmup_iter
)
{
elapsed_time
+=
run_time
;
std
::
cout
<<
"Current image path: "
<<
img_path
<<
std
::
endl
;
std
::
cout
<<
"Current time cost: "
<<
run_time
<<
" s, "
<<
"average time cost in all: "
<<
elapsed_time
/
(
idx
+
1
-
warmup_iter
)
<<
" s."
<<
std
::
endl
;
}
else
{
std
::
cout
<<
"Current time cost: "
<<
run_time
<<
" s."
<<
std
::
endl
;
batch_imgs
.
push_back
(
srcimg
);
img_paths
.
push_back
(
img_path
);
// step1: get all detection results
DetPredictImage
(
batch_imgs
,
img_paths
,
batch_size
,
&
detector
,
det_result
,
det_bbox_num
,
det_times
,
visual_det
,
run_benchmark
);
// select max_det_results bbox
while
(
det_result
.
size
()
>
max_det_results
)
{
det_result
.
pop_back
();
}
// step2: add the whole image for recognition to improve recall
PaddleDetection
::
ObjectResult
result_whole_img
=
{
{
0
,
0
,
srcimg
.
cols
-
1
,
srcimg
.
rows
-
1
},
0
,
1.0
};
det_result
.
push_back
(
result_whole_img
);
det_bbox_num
[
0
]
=
det_result
.
size
()
+
1
;
// step3: recognition process, use score_thres to ensure accuracy
for
(
int
j
=
0
;
j
<
det_result
.
size
();
++
j
)
{
int
w
=
det_result
[
j
].
rect
[
2
]
-
det_result
[
j
].
rect
[
0
];
int
h
=
det_result
[
j
].
rect
[
3
]
-
det_result
[
j
].
rect
[
1
];
cv
::
Rect
rect
(
det_result
[
j
].
rect
[
0
],
det_result
[
j
].
rect
[
1
],
w
,
h
);
cv
::
Mat
crop_img
=
srcimg
(
rect
);
std
::
vector
<
float
>
feature
;
classifier
.
Run
(
crop_img
,
feature
,
cls_times
);
}
// double run_time = classifier.Run(srcimg, cls_times);
batch_imgs
.
clear
();
img_paths
.
clear
();
det_bbox_num
.
clear
();
det_result
.
clear
();
}
std
::
string
presion
=
"fp32"
;
...
...
deploy/cpp_shitu/src/object_detector.cpp
0 → 100644
浏览文件 @
b3446197
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include "include/object_detector.h"
#include <chrono>
#include <iomanip>
using
namespace
paddle_infer
;
namespace
PaddleDetection
{
// Load Model and create model predictor
void
ObjectDetector
::
LoadModel
(
const
std
::
string
&
model_dir
,
const
int
batch_size
,
const
std
::
string
&
run_mode
)
{
paddle_infer
::
Config
config
;
std
::
string
prog_file
=
model_dir
+
OS_PATH_SEP
+
"inference.pdmodel"
;
std
::
string
params_file
=
model_dir
+
OS_PATH_SEP
+
"inference.pdiparams"
;
config
.
SetModel
(
prog_file
,
params_file
);
if
(
this
->
use_gpu_
)
{
config
.
EnableUseGpu
(
this
->
gpu_mem_
,
this
->
gpu_id_
);
config
.
SwitchIrOptim
(
this
->
ir_optim_
);
// // use tensorrt
// if (run_mode != "fluid") {
// auto precision = paddle_infer::Config::Precision::kFloat32;
// if (run_mode == "trt_fp32") {
// precision = paddle_infer::Config::Precision::kFloat32;
// }
// else if (run_mode == "trt_fp16") {
// precision = paddle_infer::Config::Precision::kHalf;
// }
// else if (run_mode == "trt_int8") {
// precision = paddle_infer::Config::Precision::kInt8;
// } else {
// printf("run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or
// 'trt_int8'");
// }
// set tensorrt
if
(
this
->
use_tensorrt_
)
{
config
.
EnableTensorRtEngine
(
1
<<
30
,
batch_size
,
this
->
min_subgraph_size_
,
this
->
use_fp16_
?
paddle_infer
::
Config
::
Precision
::
kHalf
:
paddle_infer
::
Config
::
Precision
::
kFloat32
,
false
,
this
->
trt_calib_mode_
);
// set use dynamic shape
if
(
this
->
use_dynamic_shape_
)
{
// set DynamicShsape for image tensor
const
std
::
vector
<
int
>
min_input_shape
=
{
1
,
3
,
this
->
trt_min_shape_
,
this
->
trt_min_shape_
};
const
std
::
vector
<
int
>
max_input_shape
=
{
1
,
3
,
this
->
trt_max_shape_
,
this
->
trt_max_shape_
};
const
std
::
vector
<
int
>
opt_input_shape
=
{
1
,
3
,
this
->
trt_opt_shape_
,
this
->
trt_opt_shape_
};
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
map_min_input_shape
=
{
{
"image"
,
min_input_shape
}};
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
map_max_input_shape
=
{
{
"image"
,
max_input_shape
}};
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
map_opt_input_shape
=
{
{
"image"
,
opt_input_shape
}};
config
.
SetTRTDynamicShapeInfo
(
map_min_input_shape
,
map_max_input_shape
,
map_opt_input_shape
);
std
::
cout
<<
"TensorRT dynamic shape enabled"
<<
std
::
endl
;
}
}
// } else if (this->device_ == "XPU"){
// config.EnableXpu(10*1024*1024);
}
else
{
config
.
DisableGpu
();
if
(
this
->
use_mkldnn_
)
{
config
.
EnableMKLDNN
();
// cache 10 different shapes for mkldnn to avoid memory leak
config
.
SetMkldnnCacheCapacity
(
10
);
}
config
.
SetCpuMathLibraryNumThreads
(
this
->
cpu_math_library_num_threads_
);
}
config
.
SwitchUseFeedFetchOps
(
false
);
config
.
SwitchIrOptim
(
this
->
ir_optim_
);
config
.
DisableGlogInfo
();
// Memory optimization
config
.
EnableMemoryOptim
();
predictor_
=
std
::
move
(
CreatePredictor
(
config
));
}
// Visualiztion MaskDetector results
cv
::
Mat
VisualizeResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
ObjectResult
>
&
results
,
const
std
::
vector
<
std
::
string
>
&
lables
,
const
std
::
vector
<
int
>
&
colormap
,
const
bool
is_rbox
=
false
)
{
cv
::
Mat
vis_img
=
img
.
clone
();
for
(
int
i
=
0
;
i
<
results
.
size
();
++
i
)
{
// Configure color and text size
std
::
ostringstream
oss
;
oss
<<
std
::
setiosflags
(
std
::
ios
::
fixed
)
<<
std
::
setprecision
(
4
);
oss
<<
lables
[
results
[
i
].
class_id
]
<<
" "
;
oss
<<
results
[
i
].
confidence
;
std
::
string
text
=
oss
.
str
();
int
c1
=
colormap
[
3
*
results
[
i
].
class_id
+
0
];
int
c2
=
colormap
[
3
*
results
[
i
].
class_id
+
1
];
int
c3
=
colormap
[
3
*
results
[
i
].
class_id
+
2
];
cv
::
Scalar
roi_color
=
cv
::
Scalar
(
c1
,
c2
,
c3
);
int
font_face
=
cv
::
FONT_HERSHEY_COMPLEX_SMALL
;
double
font_scale
=
0.5
f
;
float
thickness
=
0.5
;
cv
::
Size
text_size
=
cv
::
getTextSize
(
text
,
font_face
,
font_scale
,
thickness
,
nullptr
);
cv
::
Point
origin
;
if
(
is_rbox
)
{
// Draw object, text, and background
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
cv
::
Point
pt1
=
cv
::
Point
(
results
[
i
].
rect
[(
k
*
2
)
%
8
],
results
[
i
].
rect
[(
k
*
2
+
1
)
%
8
]);
cv
::
Point
pt2
=
cv
::
Point
(
results
[
i
].
rect
[(
k
*
2
+
2
)
%
8
],
results
[
i
].
rect
[(
k
*
2
+
3
)
%
8
]);
cv
::
line
(
vis_img
,
pt1
,
pt2
,
roi_color
,
2
);
}
}
else
{
int
w
=
results
[
i
].
rect
[
2
]
-
results
[
i
].
rect
[
0
];
int
h
=
results
[
i
].
rect
[
3
]
-
results
[
i
].
rect
[
1
];
cv
::
Rect
roi
=
cv
::
Rect
(
results
[
i
].
rect
[
0
],
results
[
i
].
rect
[
1
],
w
,
h
);
// Draw roi object, text, and background
cv
::
rectangle
(
vis_img
,
roi
,
roi_color
,
2
);
}
origin
.
x
=
results
[
i
].
rect
[
0
];
origin
.
y
=
results
[
i
].
rect
[
1
];
// Configure text background
cv
::
Rect
text_back
=
cv
::
Rect
(
results
[
i
].
rect
[
0
],
results
[
i
].
rect
[
1
]
-
text_size
.
height
,
text_size
.
width
,
text_size
.
height
);
// Draw text, and background
cv
::
rectangle
(
vis_img
,
text_back
,
roi_color
,
-
1
);
cv
::
putText
(
vis_img
,
text
,
origin
,
font_face
,
font_scale
,
cv
::
Scalar
(
255
,
255
,
255
),
thickness
);
}
return
vis_img
;
}
void
ObjectDetector
::
Preprocess
(
const
cv
::
Mat
&
ori_im
)
{
// Clone the image : keep the original mat for postprocess
cv
::
Mat
im
=
ori_im
.
clone
();
cv
::
cvtColor
(
im
,
im
,
cv
::
COLOR_BGR2RGB
);
preprocessor_
.
Run
(
&
im
,
&
inputs_
);
}
void
ObjectDetector
::
Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
ObjectResult
>
*
result
,
std
::
vector
<
int
>
bbox_num
,
bool
is_rbox
=
false
)
{
result
->
clear
();
int
start_idx
=
0
;
for
(
int
im_id
=
0
;
im_id
<
mats
.
size
();
im_id
++
)
{
cv
::
Mat
raw_mat
=
mats
[
im_id
];
int
rh
=
1
;
int
rw
=
1
;
// if (config_.arch_ == "Face") {
// rh = raw_mat.rows;
// rw = raw_mat.cols;
// }
for
(
int
j
=
start_idx
;
j
<
start_idx
+
bbox_num
[
im_id
];
j
++
)
{
if
(
is_rbox
)
{
// Class id
int
class_id
=
static_cast
<
int
>
(
round
(
output_data_
[
0
+
j
*
10
]));
// Confidence score
float
score
=
output_data_
[
1
+
j
*
10
];
int
x1
=
(
output_data_
[
2
+
j
*
10
]
*
rw
);
int
y1
=
(
output_data_
[
3
+
j
*
10
]
*
rh
);
int
x2
=
(
output_data_
[
4
+
j
*
10
]
*
rw
);
int
y2
=
(
output_data_
[
5
+
j
*
10
]
*
rh
);
int
x3
=
(
output_data_
[
6
+
j
*
10
]
*
rw
);
int
y3
=
(
output_data_
[
7
+
j
*
10
]
*
rh
);
int
x4
=
(
output_data_
[
8
+
j
*
10
]
*
rw
);
int
y4
=
(
output_data_
[
9
+
j
*
10
]
*
rh
);
ObjectResult
result_item
;
result_item
.
rect
=
{
x1
,
y1
,
x2
,
y2
,
x3
,
y3
,
x4
,
y4
};
result_item
.
class_id
=
class_id
;
result_item
.
confidence
=
score
;
result
->
push_back
(
result_item
);
}
else
{
// Class id
int
class_id
=
static_cast
<
int
>
(
round
(
output_data_
[
0
+
j
*
6
]));
// Confidence score
float
score
=
output_data_
[
1
+
j
*
6
];
int
xmin
=
(
output_data_
[
2
+
j
*
6
]
*
rw
);
int
ymin
=
(
output_data_
[
3
+
j
*
6
]
*
rh
);
int
xmax
=
(
output_data_
[
4
+
j
*
6
]
*
rw
);
int
ymax
=
(
output_data_
[
5
+
j
*
6
]
*
rh
);
int
wd
=
xmax
-
xmin
;
int
hd
=
ymax
-
ymin
;
ObjectResult
result_item
;
result_item
.
rect
=
{
xmin
,
ymin
,
xmax
,
ymax
};
result_item
.
class_id
=
class_id
;
result_item
.
confidence
=
score
;
result
->
push_back
(
result_item
);
}
}
start_idx
+=
bbox_num
[
im_id
];
}
}
void
ObjectDetector
::
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
const
int
warmup
,
const
int
repeats
,
std
::
vector
<
ObjectResult
>
*
result
,
std
::
vector
<
int
>
*
bbox_num
,
std
::
vector
<
double
>
*
times
)
{
auto
preprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
int
batch_size
=
imgs
.
size
();
// in_data_batch
std
::
vector
<
float
>
in_data_all
;
std
::
vector
<
float
>
im_shape_all
(
batch_size
*
2
);
std
::
vector
<
float
>
scale_factor_all
(
batch_size
*
2
);
// Preprocess image
for
(
int
bs_idx
=
0
;
bs_idx
<
batch_size
;
bs_idx
++
)
{
cv
::
Mat
im
=
imgs
.
at
(
bs_idx
);
Preprocess
(
im
);
im_shape_all
[
bs_idx
*
2
]
=
inputs_
.
im_shape_
[
0
];
im_shape_all
[
bs_idx
*
2
+
1
]
=
inputs_
.
im_shape_
[
1
];
scale_factor_all
[
bs_idx
*
2
]
=
inputs_
.
scale_factor_
[
0
];
scale_factor_all
[
bs_idx
*
2
+
1
]
=
inputs_
.
scale_factor_
[
1
];
// TODO: reduce cost time
in_data_all
.
insert
(
in_data_all
.
end
(),
inputs_
.
im_data_
.
begin
(),
inputs_
.
im_data_
.
end
());
}
// Prepare input tensor
auto
input_names
=
predictor_
->
GetInputNames
();
for
(
const
auto
&
tensor_name
:
input_names
)
{
auto
in_tensor
=
predictor_
->
GetInputHandle
(
tensor_name
);
if
(
tensor_name
==
"image"
)
{
int
rh
=
inputs_
.
in_net_shape_
[
0
];
int
rw
=
inputs_
.
in_net_shape_
[
1
];
in_tensor
->
Reshape
({
batch_size
,
3
,
rh
,
rw
});
in_tensor
->
CopyFromCpu
(
in_data_all
.
data
());
}
else
if
(
tensor_name
==
"im_shape"
)
{
in_tensor
->
Reshape
({
batch_size
,
2
});
in_tensor
->
CopyFromCpu
(
im_shape_all
.
data
());
}
else
if
(
tensor_name
==
"scale_factor"
)
{
in_tensor
->
Reshape
({
batch_size
,
2
});
in_tensor
->
CopyFromCpu
(
scale_factor_all
.
data
());
}
}
auto
preprocess_end
=
std
::
chrono
::
steady_clock
::
now
();
// Run predictor
// warmup
for
(
int
i
=
0
;
i
<
warmup
;
i
++
)
{
predictor_
->
Run
();
// Get output tensor
auto
output_names
=
predictor_
->
GetOutputNames
();
auto
out_tensor
=
predictor_
->
GetOutputHandle
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
out_tensor
->
shape
();
auto
out_bbox_num
=
predictor_
->
GetOutputHandle
(
output_names
[
1
]);
std
::
vector
<
int
>
out_bbox_num_shape
=
out_bbox_num
->
shape
();
// Calculate output length
int
output_size
=
1
;
for
(
int
j
=
0
;
j
<
output_shape
.
size
();
++
j
)
{
output_size
*=
output_shape
[
j
];
}
if
(
output_size
<
6
)
{
std
::
cerr
<<
"[WARNING] No object detected."
<<
std
::
endl
;
}
output_data_
.
resize
(
output_size
);
out_tensor
->
CopyToCpu
(
output_data_
.
data
());
int
out_bbox_num_size
=
1
;
for
(
int
j
=
0
;
j
<
out_bbox_num_shape
.
size
();
++
j
)
{
out_bbox_num_size
*=
out_bbox_num_shape
[
j
];
}
out_bbox_num_data_
.
resize
(
out_bbox_num_size
);
out_bbox_num
->
CopyToCpu
(
out_bbox_num_data_
.
data
());
}
bool
is_rbox
=
false
;
auto
inference_start
=
std
::
chrono
::
steady_clock
::
now
();
for
(
int
i
=
0
;
i
<
repeats
;
i
++
)
{
predictor_
->
Run
();
// Get output tensor
auto
output_names
=
predictor_
->
GetOutputNames
();
auto
out_tensor
=
predictor_
->
GetOutputHandle
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
out_tensor
->
shape
();
auto
out_bbox_num
=
predictor_
->
GetOutputHandle
(
output_names
[
1
]);
std
::
vector
<
int
>
out_bbox_num_shape
=
out_bbox_num
->
shape
();
// Calculate output length
int
output_size
=
1
;
for
(
int
j
=
0
;
j
<
output_shape
.
size
();
++
j
)
{
output_size
*=
output_shape
[
j
];
}
is_rbox
=
output_shape
[
output_shape
.
size
()
-
1
]
%
10
==
0
;
if
(
output_size
<
6
)
{
std
::
cerr
<<
"[WARNING] No object detected."
<<
std
::
endl
;
}
output_data_
.
resize
(
output_size
);
out_tensor
->
CopyToCpu
(
output_data_
.
data
());
int
out_bbox_num_size
=
1
;
for
(
int
j
=
0
;
j
<
out_bbox_num_shape
.
size
();
++
j
)
{
out_bbox_num_size
*=
out_bbox_num_shape
[
j
];
}
out_bbox_num_data_
.
resize
(
out_bbox_num_size
);
out_bbox_num
->
CopyToCpu
(
out_bbox_num_data_
.
data
());
}
auto
inference_end
=
std
::
chrono
::
steady_clock
::
now
();
auto
postprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
// Postprocessing result
result
->
clear
();
Postprocess
(
imgs
,
result
,
out_bbox_num_data_
,
is_rbox
);
bbox_num
->
clear
();
for
(
int
k
=
0
;
k
<
out_bbox_num_data_
.
size
();
k
++
)
{
int
tmp
=
out_bbox_num_data_
[
k
];
bbox_num
->
push_back
(
tmp
);
}
auto
postprocess_end
=
std
::
chrono
::
steady_clock
::
now
();
std
::
chrono
::
duration
<
float
>
preprocess_diff
=
preprocess_end
-
preprocess_start
;
times
->
push_back
(
double
(
preprocess_diff
.
count
()
*
1000
));
std
::
chrono
::
duration
<
float
>
inference_diff
=
inference_end
-
inference_start
;
times
->
push_back
(
double
(
inference_diff
.
count
()
/
repeats
*
1000
));
std
::
chrono
::
duration
<
float
>
postprocess_diff
=
postprocess_end
-
postprocess_start
;
times
->
push_back
(
double
(
postprocess_diff
.
count
()
*
1000
));
}
std
::
vector
<
int
>
GenerateColorMap
(
int
num_class
)
{
auto
colormap
=
std
::
vector
<
int
>
(
3
*
num_class
,
0
);
for
(
int
i
=
0
;
i
<
num_class
;
++
i
)
{
int
j
=
0
;
int
lab
=
i
;
while
(
lab
)
{
colormap
[
i
*
3
]
|=
(((
lab
>>
0
)
&
1
)
<<
(
7
-
j
));
colormap
[
i
*
3
+
1
]
|=
(((
lab
>>
1
)
&
1
)
<<
(
7
-
j
));
colormap
[
i
*
3
+
2
]
|=
(((
lab
>>
2
)
&
1
)
<<
(
7
-
j
));
++
j
;
lab
>>=
3
;
}
}
return
colormap
;
}
}
// namespace PaddleDetection
deploy/cpp_shitu/src/preprocess_op_det.cpp
0 → 100644
浏览文件 @
b3446197
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "include/preprocess_op_det.h"
namespace
PaddleDetection
{
void
InitInfo
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
data
->
im_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
)};
data
->
scale_factor_
=
{
1.
,
1.
};
data
->
in_net_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
)};
}
void
NormalizeImage
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
double
e
=
1.0
;
if
(
is_scale_
)
{
e
/=
255.0
;
}
(
*
im
).
convertTo
(
*
im
,
CV_32FC3
,
e
);
for
(
int
h
=
0
;
h
<
im
->
rows
;
h
++
)
{
for
(
int
w
=
0
;
w
<
im
->
cols
;
w
++
)
{
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
-
mean_
[
0
])
/
scale_
[
0
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
-
mean_
[
1
])
/
scale_
[
1
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
-
mean_
[
2
])
/
scale_
[
2
];
}
}
}
void
Permute
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
int
rh
=
im
->
rows
;
int
rw
=
im
->
cols
;
int
rc
=
im
->
channels
();
(
data
->
im_data_
).
resize
(
rc
*
rh
*
rw
);
float
*
base
=
(
data
->
im_data_
).
data
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
*
im
,
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
base
+
i
*
rh
*
rw
),
i
);
}
}
void
Resize
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
auto
resize_scale
=
GenerateScale
(
*
im
);
data
->
im_shape_
=
{
static_cast
<
float
>
(
im
->
cols
*
resize_scale
.
first
),
static_cast
<
float
>
(
im
->
rows
*
resize_scale
.
second
)};
data
->
in_net_shape_
=
{
static_cast
<
float
>
(
im
->
cols
*
resize_scale
.
first
),
static_cast
<
float
>
(
im
->
rows
*
resize_scale
.
second
)};
cv
::
resize
(
*
im
,
*
im
,
cv
::
Size
(),
resize_scale
.
first
,
resize_scale
.
second
,
interp_
);
data
->
im_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
),
};
data
->
scale_factor_
=
{
resize_scale
.
second
,
resize_scale
.
first
,
};
}
std
::
pair
<
float
,
float
>
Resize
::
GenerateScale
(
const
cv
::
Mat
&
im
)
{
std
::
pair
<
float
,
float
>
resize_scale
;
int
origin_w
=
im
.
cols
;
int
origin_h
=
im
.
rows
;
if
(
keep_ratio_
)
{
int
im_size_max
=
std
::
max
(
origin_w
,
origin_h
);
int
im_size_min
=
std
::
min
(
origin_w
,
origin_h
);
int
target_size_max
=
*
std
::
max_element
(
target_size_
.
begin
(),
target_size_
.
end
());
int
target_size_min
=
*
std
::
min_element
(
target_size_
.
begin
(),
target_size_
.
end
());
float
scale_min
=
static_cast
<
float
>
(
target_size_min
)
/
static_cast
<
float
>
(
im_size_min
);
float
scale_max
=
static_cast
<
float
>
(
target_size_max
)
/
static_cast
<
float
>
(
im_size_max
);
float
scale_ratio
=
std
::
min
(
scale_min
,
scale_max
);
resize_scale
=
{
scale_ratio
,
scale_ratio
};
}
else
{
resize_scale
.
first
=
static_cast
<
float
>
(
target_size_
[
1
])
/
static_cast
<
float
>
(
origin_w
);
resize_scale
.
second
=
static_cast
<
float
>
(
target_size_
[
0
])
/
static_cast
<
float
>
(
origin_h
);
}
return
resize_scale
;
}
void
PadStride
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
if
(
stride_
<=
0
)
{
return
;
}
int
rc
=
im
->
channels
();
int
rh
=
im
->
rows
;
int
rw
=
im
->
cols
;
int
nh
=
(
rh
/
stride_
)
*
stride_
+
(
rh
%
stride_
!=
0
)
*
stride_
;
int
nw
=
(
rw
/
stride_
)
*
stride_
+
(
rw
%
stride_
!=
0
)
*
stride_
;
cv
::
copyMakeBorder
(
*
im
,
*
im
,
0
,
nh
-
rh
,
0
,
nw
-
rw
,
cv
::
BORDER_CONSTANT
,
cv
::
Scalar
(
0
));
data
->
in_net_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
),
};
}
// Preprocessor op running order
const
std
::
vector
<
std
::
string
>
Preprocessor
::
RUN_ORDER
=
{
"InitInfo"
,
"Resize"
,
"NormalizeImage"
,
"PadStride"
,
"Permute"
};
void
Preprocessor
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
for
(
const
auto
&
name
:
RUN_ORDER
)
{
if
(
ops_
.
find
(
name
)
!=
ops_
.
end
())
{
ops_
[
name
]
->
Run
(
im
,
data
);
}
}
}
}
// namespace PaddleDetection
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录