main.cpp 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <opencv2/core/utils/filesystem.hpp>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <auto_log/autolog.h>
#include <include/cls.h>
31
#include <include/object_detector.h>
D
dongshuilong 已提交
32
#include <include/vector_search.h>
D
dongshuilong 已提交
33
#include <include/yaml_config.h>
34 35 36

using namespace std;
using namespace cv;
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
                     const std::vector<std::string> &all_img_paths,
                     const int batch_size, PaddleDetection::ObjectDetector *det,
                     std::vector<PaddleDetection::ObjectResult> &im_result,
                     std::vector<int> &im_bbox_num, std::vector<double> &det_t,
                     const bool visual_det = false,
                     const bool run_benchmark = false,
                     const std::string &output_dir = "output") {
  int steps = ceil(float(all_img_paths.size()) / batch_size);
  //   printf("total images = %d, batch_size = %d, total steps = %d\n",
  //                 all_img_paths.size(), batch_size, steps);
  for (int idx = 0; idx < steps; idx++) {
    int left_image_cnt = all_img_paths.size() - idx * batch_size;
    if (left_image_cnt > batch_size) {
      left_image_cnt = batch_size;
    }
    // for (int bs = 0; bs < left_image_cnt; bs++) {
    // std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
    // cv::Mat im = cv::imread(image_file_path, 1);
    // batch_imgs.insert(batch_imgs.end(), im);
    // }

    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;
    bool is_rbox = false;
    if (run_benchmark) {
      det->Predict(batch_imgs, 10, 10, &result, &bbox_num, &det_times);
    } else {
      det->Predict(batch_imgs, 0, 1, &result, &bbox_num, &det_times);
      // get labels and colormap
      auto labels = det->GetLabelList();
      auto colormap = PaddleDetection::GenerateColorMap(labels.size());

      int item_start_idx = 0;
      for (int i = 0; i < left_image_cnt; i++) {
        cv::Mat im = batch_imgs[i];
        int detect_num = 0;

        for (int j = 0; j < bbox_num[i]; j++) {
          PaddleDetection::ObjectResult item = result[item_start_idx + j];
          if (item.confidence < det->GetThreshold() || item.class_id == -1) {
            continue;
          }
          detect_num += 1;
          im_result.push_back(item);
          if (visual_det) {
            if (item.rect.size() > 6) {
              is_rbox = true;
              printf(
                  "class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
                  item.class_id, item.confidence, item.rect[0], item.rect[1],
                  item.rect[2], item.rect[3], item.rect[4], item.rect[5],
                  item.rect[6], item.rect[7]);
            } else {
              printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
                     item.class_id, item.confidence, item.rect[0], item.rect[1],
                     item.rect[2], item.rect[3]);
            }
          }
        }
        im_bbox_num.push_back(detect_num);
        item_start_idx = item_start_idx + bbox_num[i];

        // Visualization result
        if (visual_det) {
          std::cout << all_img_paths.at(idx * batch_size + i)
                    << " The number of detected box: " << detect_num
                    << std::endl;
          cv::Mat vis_img = PaddleDetection::VisualizeResult(
              im, im_result, labels, colormap, is_rbox);
          std::vector<int> compression_params;
          compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
          compression_params.push_back(95);
          std::string output_path(output_dir);
          if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
            output_path += OS_PATH_SEP;
          }
          std::string image_file_path = all_img_paths.at(idx * batch_size + i);
          output_path +=
              image_file_path.substr(image_file_path.find_last_of('/') + 1);
          cv::imwrite(output_path, vis_img, compression_params);
          printf("Visualized output saved as %s\n", output_path.c_str());
        }
      }
    }
    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
}
130 131 132 133 134 135 136

int main(int argc, char **argv) {
  if (argc != 2) {
    std::cerr << "[ERROR] usage: " << argv[0] << " yaml_path\n";
    exit(1);
  }

D
dongshuilong 已提交
137
  YamlConfig config(argv[1]);
138 139
  config.PrintConfigInfo();

D
dongshuilong 已提交
140 141 142 143 144
  // initialize detector, rec_Model, vector_search
  PaddleClas::Classifier classifier(config.config_file);
  PaddleDetection::ObjectDetector detector(config.config_file);
  VectorSearch searcher(config.config_file);

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  // config
  const int batch_size = config.config_file["Global"]["batch_size"].as<int>();
  bool visual_det = false;
  if (config.config_file["Global"]["visual_det"].IsDefined()) {
    visual_det = config.config_file["Global"]["visual_det"].as<bool>();
  }
  bool run_benchmark = false;
  if (config.config_file["Global"]["benchmark"].IsDefined()) {
    run_benchmark = config.config_file["Global"]["benchmark"].as<bool>();
  }
  int max_det_results = 5;
  if (config.config_file["Global"]["max_det_results"].IsDefined()) {
    max_det_results = config.config_file["Global"]["max_det_results"].as<int>();
  }

D
dongshuilong 已提交
160
  // load image_file_path
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  std::string path =
      config.config_file["Global"]["infer_imgs"].as<std::string>();
  std::vector<std::string> img_files_list;
  if (cv::utils::fs::isDirectory(path)) {
    std::vector<cv::String> filenames;
    cv::glob(path, filenames);
    for (auto f : filenames) {
      img_files_list.push_back(f);
    }
  } else {
    img_files_list.push_back(path);
  }
  std::cout << "img_file_list length: " << img_files_list.size() << std::endl;

  double elapsed_time = 0.0;
176 177 178 179 180 181
  std::vector<double> cls_times = {0, 0, 0};
  std::vector<double> det_times = {0, 0, 0};
  std::vector<cv::Mat> batch_imgs;
  std::vector<std::string> img_paths;
  std::vector<PaddleDetection::ObjectResult> det_result;
  std::vector<int> det_bbox_num;
D
dongshuilong 已提交
182 183
  std::vector<float> features;
  std::vector<float> feature;
184

185 186 187 188 189 190 191 192 193 194 195
  int warmup_iter = img_files_list.size() > 5 ? 5 : 0;
  for (int idx = 0; idx < img_files_list.size(); ++idx) {
    std::string img_path = img_files_list[idx];
    cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: " << img_path
                << "\n";
      exit(-1);
    }
    cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    batch_imgs.push_back(srcimg);
    img_paths.push_back(img_path);

    // step1: get all detection results
    DetPredictImage(batch_imgs, img_paths, batch_size, &detector, det_result,
                    det_bbox_num, det_times, visual_det, run_benchmark);

    // select max_det_results bbox
    while (det_result.size() > max_det_results) {
      det_result.pop_back();
    }
    // step2: add the whole image for recognition to improve recall
    PaddleDetection::ObjectResult result_whole_img = {
        {0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0};
    det_result.push_back(result_whole_img);
    det_bbox_num[0] = det_result.size() + 1;

D
dongshuilong 已提交
213 214
    // step3: extract feature for all boxes in an inmage
    SearchResult search_result;
215 216 217 218 219 220
    for (int j = 0; j < det_result.size(); ++j) {
      int w = det_result[j].rect[2] - det_result[j].rect[0];
      int h = det_result[j].rect[3] - det_result[j].rect[1];
      cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
      cv::Mat crop_img = srcimg(rect);
      classifier.Run(crop_img, feature, cls_times);
D
dongshuilong 已提交
221
      features.insert(features.end(), feature.begin(), feature.end());
222
    }
D
dongshuilong 已提交
223 224 225 226 227 228 229

    // step4: get search result
    search_result = searcher.Search(features.data(), det_result.size());

    // nms for search result

    // for postprocess
230 231 232 233
    batch_imgs.clear();
    img_paths.clear();
    det_bbox_num.clear();
    det_result.clear();
D
dongshuilong 已提交
234 235
    feature.clear();
    features.clear();
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  }

  std::string presion = "fp32";

  // if (config.use_fp16)
  //   presion = "fp16";
  // if (config.benchmark) {
  //   AutoLogger autolog("Classification", config.use_gpu, config.use_tensorrt,
  //                      config.use_mkldnn, config.cpu_threads, 1,
  //                      "1, 3, 224, 224", presion, cls_times,
  //                      img_files_list.size());
  //   autolog.report();
  // }
  return 0;
}