main.cpp 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <opencv2/core/utils/filesystem.hpp>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <auto_log/autolog.h>
#include <include/cls.h>
31
#include <include/object_detector.h>
32 33 34 35
#include <include/yaml_config.h>

using namespace std;
using namespace cv;
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
                     const std::vector<std::string> &all_img_paths,
                     const int batch_size, PaddleDetection::ObjectDetector *det,
                     std::vector<PaddleDetection::ObjectResult> &im_result,
                     std::vector<int> &im_bbox_num, std::vector<double> &det_t,
                     const bool visual_det = false,
                     const bool run_benchmark = false,
                     const std::string &output_dir = "output") {
  int steps = ceil(float(all_img_paths.size()) / batch_size);
  //   printf("total images = %d, batch_size = %d, total steps = %d\n",
  //                 all_img_paths.size(), batch_size, steps);
  for (int idx = 0; idx < steps; idx++) {
    int left_image_cnt = all_img_paths.size() - idx * batch_size;
    if (left_image_cnt > batch_size) {
      left_image_cnt = batch_size;
    }
    // for (int bs = 0; bs < left_image_cnt; bs++) {
    // std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
    // cv::Mat im = cv::imread(image_file_path, 1);
    // batch_imgs.insert(batch_imgs.end(), im);
    // }

    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;
    bool is_rbox = false;
    if (run_benchmark) {
      det->Predict(batch_imgs, 10, 10, &result, &bbox_num, &det_times);
    } else {
      det->Predict(batch_imgs, 0, 1, &result, &bbox_num, &det_times);
      // get labels and colormap
      auto labels = det->GetLabelList();
      auto colormap = PaddleDetection::GenerateColorMap(labels.size());

      int item_start_idx = 0;
      for (int i = 0; i < left_image_cnt; i++) {
        cv::Mat im = batch_imgs[i];
        int detect_num = 0;

        for (int j = 0; j < bbox_num[i]; j++) {
          PaddleDetection::ObjectResult item = result[item_start_idx + j];
          if (item.confidence < det->GetThreshold() || item.class_id == -1) {
            continue;
          }
          detect_num += 1;
          im_result.push_back(item);
          if (visual_det) {
            if (item.rect.size() > 6) {
              is_rbox = true;
              printf(
                  "class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
                  item.class_id, item.confidence, item.rect[0], item.rect[1],
                  item.rect[2], item.rect[3], item.rect[4], item.rect[5],
                  item.rect[6], item.rect[7]);
            } else {
              printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
                     item.class_id, item.confidence, item.rect[0], item.rect[1],
                     item.rect[2], item.rect[3]);
            }
          }
        }
        im_bbox_num.push_back(detect_num);
        item_start_idx = item_start_idx + bbox_num[i];

        // Visualization result
        if (visual_det) {
          std::cout << all_img_paths.at(idx * batch_size + i)
                    << " The number of detected box: " << detect_num
                    << std::endl;
          cv::Mat vis_img = PaddleDetection::VisualizeResult(
              im, im_result, labels, colormap, is_rbox);
          std::vector<int> compression_params;
          compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
          compression_params.push_back(95);
          std::string output_path(output_dir);
          if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
            output_path += OS_PATH_SEP;
          }
          std::string image_file_path = all_img_paths.at(idx * batch_size + i);
          output_path +=
              image_file_path.substr(image_file_path.find_last_of('/') + 1);
          cv::imwrite(output_path, vis_img, compression_params);
          printf("Visualized output saved as %s\n", output_path.c_str());
        }
      }
    }
    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
}
129 130 131 132 133 134 135

int main(int argc, char **argv) {
  if (argc != 2) {
    std::cerr << "[ERROR] usage: " << argv[0] << " yaml_path\n";
    exit(1);
  }

136
  PaddleClas::YamlConfig config(argv[1]);
137 138
  config.PrintConfigInfo();

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  // config
  const int batch_size = config.config_file["Global"]["batch_size"].as<int>();
  bool visual_det = false;
  if (config.config_file["Global"]["visual_det"].IsDefined()) {
    visual_det = config.config_file["Global"]["visual_det"].as<bool>();
  }
  bool run_benchmark = false;
  if (config.config_file["Global"]["benchmark"].IsDefined()) {
    run_benchmark = config.config_file["Global"]["benchmark"].as<bool>();
  }
  int max_det_results = 5;
  if (config.config_file["Global"]["max_det_results"].IsDefined()) {
    max_det_results = config.config_file["Global"]["max_det_results"].as<int>();
  }

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  std::string path =
      config.config_file["Global"]["infer_imgs"].as<std::string>();
  std::vector<std::string> img_files_list;
  if (cv::utils::fs::isDirectory(path)) {
    std::vector<cv::String> filenames;
    cv::glob(path, filenames);
    for (auto f : filenames) {
      img_files_list.push_back(f);
    }
  } else {
    img_files_list.push_back(path);
  }

  std::cout << "img_file_list length: " << img_files_list.size() << std::endl;

169 170
  PaddleClas::Classifier classifier(config.config_file);
  PaddleDetection::ObjectDetector detector(config.config_file);
171 172

  double elapsed_time = 0.0;
173 174 175 176 177 178 179
  std::vector<double> cls_times = {0, 0, 0};
  std::vector<double> det_times = {0, 0, 0};
  std::vector<cv::Mat> batch_imgs;
  std::vector<std::string> img_paths;
  std::vector<PaddleDetection::ObjectResult> det_result;
  std::vector<int> det_bbox_num;

180 181 182 183 184 185 186 187 188 189 190
  int warmup_iter = img_files_list.size() > 5 ? 5 : 0;
  for (int idx = 0; idx < img_files_list.size(); ++idx) {
    std::string img_path = img_files_list[idx];
    cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: " << img_path
                << "\n";
      exit(-1);
    }
    cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    batch_imgs.push_back(srcimg);
    img_paths.push_back(img_path);

    // step1: get all detection results
    DetPredictImage(batch_imgs, img_paths, batch_size, &detector, det_result,
                    det_bbox_num, det_times, visual_det, run_benchmark);

    // select max_det_results bbox
    while (det_result.size() > max_det_results) {
      det_result.pop_back();
    }
    // step2: add the whole image for recognition to improve recall
    PaddleDetection::ObjectResult result_whole_img = {
        {0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0};
    det_result.push_back(result_whole_img);
    det_bbox_num[0] = det_result.size() + 1;

    // step3: recognition process, use score_thres to ensure accuracy
    for (int j = 0; j < det_result.size(); ++j) {
      int w = det_result[j].rect[2] - det_result[j].rect[0];
      int h = det_result[j].rect[3] - det_result[j].rect[1];
      cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
      cv::Mat crop_img = srcimg(rect);
      std::vector<float> feature;
      classifier.Run(crop_img, feature, cls_times);
216
    }
217 218 219 220 221
    // double run_time = classifier.Run(srcimg, cls_times);
    batch_imgs.clear();
    img_paths.clear();
    det_bbox_num.clear();
    det_result.clear();
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  }

  std::string presion = "fp32";

  // if (config.use_fp16)
  //   presion = "fp16";
  // if (config.benchmark) {
  //   AutoLogger autolog("Classification", config.use_gpu, config.use_tensorrt,
  //                      config.use_mkldnn, config.cpu_threads, 1,
  //                      "1, 3, 224, 224", presion, cls_times,
  //                      img_files_list.size());
  //   autolog.report();
  // }
  return 0;
}