paddleclas.py 23.0 KB
Newer Older
T
Tingquan Gao 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(__file__)
T
Tingquan Gao 已提交
18 19 20
sys.path.append(os.path.join(__dir__, ""))
sys.path.append(os.path.join(__dir__, "deploy"))

21
from typing import Union, Generator
T
Tingquan Gao 已提交
22 23
import argparse
import shutil
T
Tingquan Gao 已提交
24
import textwrap
T
Tingquan Gao 已提交
25 26 27
import tarfile
import requests
from functools import partial
T
Tingquan Gao 已提交
28
from difflib import SequenceMatcher
C
chenziheng 已提交
29 30 31 32

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
33 34 35 36 37 38
from prettytable import PrettyTable

from deploy.python.predict_cls import ClsPredictor
from deploy.utils.get_image_list import get_image_list
from deploy.utils import config

39
import ppcls.arch.backbone as backbone
G
gaotingquan 已提交
40
from ppcls.utils import logger
T
Tingquan Gao 已提交
41

42
# for building model with loading pretrained weights from backbone
G
gaotingquan 已提交
43
logger.init_logger()
44

T
Tingquan Gao 已提交
45
__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
46

C
chenziheng 已提交
47
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
48 49
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
50 51
IMN_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
IMN_MODEL_SERIES = {
T
Tingquan Gao 已提交
52 53 54
    "AlexNet": ["AlexNet"],
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
55 56 57 58
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
59 60 61 62 63
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
64 65 66 67
    "DLA": [
        "DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x",
        "DLA102x2", "DLA169"
    ],
T
Tingquan Gao 已提交
68 69 70 71 72 73
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
G
gaotingquan 已提交
74
    "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
T
Tingquan Gao 已提交
75 76
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
77
    "HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"],
T
Tingquan Gao 已提交
78 79 80 81 82 83
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
G
gaotingquan 已提交
84
    "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
T
Tingquan Gao 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
102 103 104 105
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
106
    "RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"],
T
Tingquan Gao 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
131 132
    "ReXNet":
    ["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"],
T
Tingquan Gao 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
154 155 156 157
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
T
Tingquan Gao 已提交
158 159 160 161 162 163 164 165 166 167
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
168 169
}

170 171 172 173 174 175
PULC_MODEL_BASE_DOWNLOAD_URL = "https://paddleclas.bj.bcebos.com/models/PULC/{}_infer.tar"
PULC_MODELS = [
    "person_exists", "person_attribute", "safety_helmet", "traffic_sign",
    "car_exists", "car_attribute", "text_line", "multilingual"
]

C
chenziheng 已提交
176

T
Tingquan Gao 已提交
177 178
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
179 180
    """

T
Tingquan Gao 已提交
181
    def __init__(self, message=""):
T
Tingquan Gao 已提交
182 183 184
        super().__init__(message)


T
Tingquan Gao 已提交
185 186 187 188 189 190 191 192
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
def init_config(model_type, model_name, inference_model_dir, **kwargs):

    cfg_path = f"deploy/configs/PULC/{model_name}/inference_{model_name}.yaml" if model_type == "pulc" else "deploy/configs/inference_cls.yaml"
    cfg = config.get_config(cfg_path, show=False)

    cfg.Global.inference_model_dir = inference_model_dir

    if "batch_size" in kwargs and kwargs["batch_size"]:
        cfg.Global.batch_size = kwargs["batch_size"]
    if "use_gpu" in kwargs and kwargs["use_gpu"]:
        cfg.Global.use_gpu = kwargs["use_gpu"]

    if "infer_imgs" in kwargs and kwargs["infer_imgs"]:
        cfg.Global.infer_imgs = kwargs["infer_imgs"]
    if "enable_mkldnn" in kwargs and kwargs["enable_mkldnn"]:
        cfg.Global.enable_mkldnn = kwargs["enable_mkldnn"]
    if "cpu_num_threads" in kwargs and kwargs["cpu_num_threads"]:
        cfg.Global.cpu_num_threads = kwargs["cpu_num_threads"]
    if "use_fp16" in kwargs and kwargs["use_fp16"]:
        cfg.Global.use_fp16 = kwargs["use_fp16"]
    if "use_tensorrt" in kwargs and kwargs["use_tensorrt"]:
        cfg.Global.use_tensorrt = kwargs["use_tensorrt"]
    if "gpu_mem" in kwargs and kwargs["gpu_mem"]:
        cfg.Global.gpu_mem = kwargs["gpu_mem"]
    if "resize_short" in kwargs and kwargs["resize_short"]:
        cfg.PreProcess.transform_ops[0]["ResizeImage"][
            "resize_short"] = kwargs["resize_short"]
    if "crop_size" in kwargs and kwargs["crop_size"]:
        cfg.PreProcess.transform_ops[1]["CropImage"]["size"] = kwargs[
            "crop_size"]

    # TODO(gaotingquan): not robust
    if "thresh" in kwargs and kwargs[
            "thresh"] and "ThreshOutput" in cfg.PostProcess:
        cfg.PostProcess.ThreshOutput.thresh = kwargs["thresh"]
    if "Topk" in cfg.PostProcess:
        if "topk" in kwargs and kwargs["topk"]:
            cfg.PostProcess.Topk.topk = kwargs["topk"]
        if "class_id_map_file" in kwargs and kwargs["class_id_map_file"]:
            cfg.PostProcess.Topk.class_id_map_file = kwargs[
T
Tingquan Gao 已提交
233
                "class_id_map_file"]
234 235 236 237 238 239 240 241 242 243 244 245 246
        else:
            cfg.PostProcess.Topk.class_id_map_file = os.path.relpath(
                cfg.PostProcess.Topk.class_id_map_file, "../")
    if "VehicleAttribute" in cfg.PostProcess:
        if "color_threshold" in kwargs and kwargs["color_threshold"]:
            cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                "color_threshold"]
        if "type_threshold" in kwargs and kwargs["type_threshold"]:
            cfg.PostProcess.VehicleAttribute.type_threshold = kwargs[
                "type_threshold"]

    if "save_dir" in kwargs and kwargs["save_dir"]:
        cfg.PostProcess.SavePreLabel.save_dir = kwargs["save_dir"]
T
Tingquan Gao 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
268
    parser.add_argument("--use_gpu", type=str, help="Whether use GPU.")
T
Tingquan Gao 已提交
269 270 271 272 273 274 275 276 277 278
    parser.add_argument("--gpu_mem", type=int, default=8000, help="")
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        default=False,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument("--cpu_num_threads", type=int, default=1, help="")
    parser.add_argument(
        "--use_tensorrt", type=str2bool, default=False, help="")
    parser.add_argument("--use_fp16", type=str2bool, default=False, help="")
279
    parser.add_argument("--batch_size", type=int, help="Batch size.")
T
Tingquan Gao 已提交
280 281 282
    parser.add_argument(
        "--topk",
        type=int,
283 284
        help="Return topk score(s) and corresponding results when Topk postprocess is used."
    )
T
Tingquan Gao 已提交
285 286 287 288
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
289 290 291 292 293 294
    parser.add_argument(
        "--threshold",
        type=float,
        help="The threshold of ThreshOutput when postprocess is used.")
    parser.add_argument("--color_threshold", type=float, help="")
    parser.add_argument("--type_threshold", type=float, help="")
T
Tingquan Gao 已提交
295 296 297 298
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
299
    parser.add_argument(
300 301
        "--resize_short", type=int, help="Resize according to short size.")
    parser.add_argument("--crop_size", type=int, help="Centor crop size.")
T
Tingquan Gao 已提交
302 303 304

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
305 306


T
Tingquan Gao 已提交
307
def print_info():
T
Tingquan Gao 已提交
308 309
    """Print list of supported models in formatted.
    """
310 311
    imn_table = PrettyTable(["IMN Model Series", "Model Name"])
    pulc_table = PrettyTable(["PULC Models"])
T
Tingquan Gao 已提交
312 313
    try:
        sz = os.get_terminal_size()
314 315 316
        total_width = sz.columns
        first_width = 30
        second_width = total_width - first_width if total_width > 50 else 10
T
Tingquan Gao 已提交
317
    except OSError:
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        second_width = 100
    for series in IMN_MODEL_SERIES:
        names = textwrap.fill(
            "  ".join(IMN_MODEL_SERIES[series]), width=second_width)
        imn_table.add_row([series, names])

    table_width = len(str(imn_table).split("\n")[0])
    pulc_table.add_row([
        textwrap.fill(
            "  ".join(PULC_MODELS), width=total_width).center(table_width - 4)
    ])

    print("{}".format("-" * table_width))
    print("Models supported by PaddleClas".center(table_width))
    print(imn_table)
    print(pulc_table)
    print("Powered by PaddlePaddle!".rjust(table_width))
    print("{}".format("-" * table_width))


def get_imn_model_names():
T
Tingquan Gao 已提交
339 340
    """Get the model names list.
    """
T
Tingquan Gao 已提交
341
    model_names = []
342 343
    for series in IMN_MODEL_SERIES:
        model_names += (IMN_MODEL_SERIES[series])
T
Tingquan Gao 已提交
344 345 346
    return model_names


347
def similar_model_names(name="", names=[], thresh=0.1, topk=5):
T
Tingquan Gao 已提交
348
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
349 350 351
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
352
        if n.startswith("__"):
T
Tingquan Gao 已提交
353 354 355 356 357 358 359 360 361
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
362
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
363 364 365 366
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
367
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
368
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
369
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
370 371
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
372 373 374 375
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
376 377
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
378
        raise Exception(
T
Tingquan Gao 已提交
379
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
380 381


382
def check_model_file(model_type, model_name):
383
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
384
    """
385 386 387 388 389 390 391 392
    if model_type == "pulc":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PULC", model_name)
        url = PULC_MODEL_BASE_DOWNLOAD_URL.format(model_name)
    else:
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "IMN", model_name)
        url = IMN_MODEL_BASE_DOWNLOAD_URL.format(model_name)
T
Tingquan Gao 已提交
393

C
chenziheng 已提交
394
    tar_file_name_list = [
T
Tingquan Gao 已提交
395
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
396
    ]
T
Tingquan Gao 已提交
397 398 399 400 401
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
G
gaotingquan 已提交
402
        logger.info(f"download {url} to {tmp_path}")
T
Tingquan Gao 已提交
403
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
404
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
405
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
406 407 408 409 410 411 412 413
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
414
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
415 416
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
417 418 419 420 421
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
422

T
Tingquan Gao 已提交
423
    return storage_directory()
C
chenziheng 已提交
424

T
Tingquan Gao 已提交
425

C
chenziheng 已提交
426
class PaddleClas(object):
T
Tingquan Gao 已提交
427 428 429
    """PaddleClas.
    """

T
Tingquan Gao 已提交
430
    print_info()
C
chenziheng 已提交
431

T
Tingquan Gao 已提交
432 433 434
    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
435
                 **kwargs):
T
Tingquan Gao 已提交
436
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
437

T
Tingquan Gao 已提交
438
        Args:
439 440 441 442 443
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
444 445
        """
        super().__init__()
446 447 448 449 450
        self.model_type, inference_model_dir = self._check_input_model(
            model_name, inference_model_dir)
        self._config = init_config(self.model_type, model_name,
                                   inference_model_dir, **kwargs)

T
Tingquan Gao 已提交
451 452 453 454
        self.cls_predictor = ClsPredictor(self._config)

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
455
        """
T
Tingquan Gao 已提交
456 457
        return self._config

458
    def _check_input_model(self, model_name, inference_model_dir):
T
Tingquan Gao 已提交
459 460
        """Check input model name or model files.
        """
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        all_imn_model_names = get_imn_model_names()
        all_pulc_model_names = PULC_MODELS

        if model_name:
            if model_name in all_imn_model_names:
                inference_model_dir = check_model_file("imn", model_name)
                return "imn", inference_model_dir
            elif model_name in all_pulc_model_names:
                inference_model_dir = check_model_file("pulc", model_name)
                return "pulc", inference_model_dir
            else:
                similar_imn_names = similar_model_names(model_name,
                                                        all_imn_model_names)
                similar_pulc_names = similar_model_names(model_name,
                                                         all_pulc_model_names)
                similar_names_str = ", ".join(similar_imn_names +
                                              similar_pulc_names)
                err = f"{model_name} is not provided by PaddleClas. \nMaybe you want the : [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
479
                raise InputModelError(err)
480
        elif inference_model_dir:
T
Tingquan Gao 已提交
481 482 483 484 485 486 487 488
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
489
            return "custom", inference_model_dir
T
Tingquan Gao 已提交
490
        else:
T
Tingquan Gao 已提交
491
            err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
492
            raise InputModelError(err)
493
        return None
T
Tingquan Gao 已提交
494

495 496
    def predict(self, input_data: Union[str, np.array],
                print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
497 498
        """Predict input_data.

C
chenziheng 已提交
499
        Args:
G
gaotingquan 已提交
500
            input_data (Union[str, np.array]):
501 502
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
G
gaotingquan 已提交
503
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.
T
Tingquan Gao 已提交
504 505 506 507 508

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
509 510 511
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
G
gaotingquan 已提交
512
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
513
        """
514

T
Tingquan Gao 已提交
515
        if isinstance(input_data, np.ndarray):
G
gaotingquan 已提交
516
            yield self.cls_predictor.predict(input_data)
T
Tingquan Gao 已提交
517
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
518
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
519 520 521 522 523
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
G
gaotingquan 已提交
524
                logger.info(
T
Tingquan Gao 已提交
525 526
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
527
                input_data = image_save_path
T
Tingquan Gao 已提交
528 529 530 531 532
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)

            img_list = []
T
Tingquan Gao 已提交
533 534
            img_path_list = []
            cnt = 0
535
            for idx_img, img_path in enumerate(image_list):
T
Tingquan Gao 已提交
536 537
                img = cv2.imread(img_path)
                if img is None:
G
gaotingquan 已提交
538
                    logger.warning(
T
Tingquan Gao 已提交
539 540
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
541
                    continue
542
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
543 544 545 546
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

547
                if cnt % batch_size == 0 or (idx_img + 1) == len(image_list):
G
gaotingquan 已提交
548 549
                    preds = self.cls_predictor.predict(img_list)

550 551 552 553
                    if preds:
                        for idx_pred, pred in enumerate(preds):
                            pred["filename"] = img_path_list[idx_pred]
                            if print_pred:
G
gaotingquan 已提交
554
                                logger.info(", ".join(
555
                                    [f"{k}: {pred[k]}" for k in pred]))
T
Tingquan Gao 已提交
556

T
Tingquan Gao 已提交
557
                    img_list = []
T
Tingquan Gao 已提交
558
                    img_path_list = []
T
Tingquan Gao 已提交
559
                    yield preds
C
chenziheng 已提交
560
        else:
T
Tingquan Gao 已提交
561 562 563
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
564 565


T
Tingquan Gao 已提交
566
# for CLI
C
chenziheng 已提交
567
def main():
T
Tingquan Gao 已提交
568 569 570
    """Function API used for commad line.
    """
    cfg = args_cfg()
T
Tingquan Gao 已提交
571 572 573 574
    clas_engine = PaddleClas(**cfg)
    res = clas_engine.predict(cfg["infer_imgs"], print_pred=True)
    for _ in res:
        pass
G
gaotingquan 已提交
575
    logger.info("Predict complete!")
T
Tingquan Gao 已提交
576
    return
C
chenziheng 已提交
577 578


T
Tingquan Gao 已提交
579
if __name__ == "__main__":
C
chenziheng 已提交
580
    main()