peleenet.py 8.8 KB
Newer Older
Y
Yang Nie 已提交
1
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
Y
Yang Nie 已提交
2
#
C
cuicheng01 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Y
Yang Nie 已提交
6
#
C
cuicheng01 已提交
7
#    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Nie 已提交
8
#
C
cuicheng01 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yang Nie 已提交
14 15 16 17 18 19 20 21 22 23 24
#
# Code was heavily based on https://github.com/Robert-JunWang/PeleeNet
# reference: https://arxiv.org/pdf/1804.06882.pdf

import math

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant

R
root 已提交
25
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
Y
Yang Nie 已提交
26 27

MODEL_URLS = {
C
cuicheng01 已提交
28
    "PeleeNet": ""  # TODO
Y
Yang Nie 已提交
29 30 31 32 33 34 35 36 37 38 39
}

__all__ = MODEL_URLS.keys()

normal_ = lambda x, mean=0, std=1: Normal(mean, std)(x)
constant_ = lambda x, value=0: Constant(value)(x)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)


class _DenseLayer(nn.Layer):
R
root 已提交
40 41
    def __init__(self, num_input_features, growth_rate, bottleneck_width,
                 drop_rate):
Y
Yang Nie 已提交
42 43 44 45 46 47 48 49 50
        super(_DenseLayer, self).__init__()

        growth_rate = int(growth_rate / 2)
        inter_channel = int(growth_rate * bottleneck_width / 4) * 4

        if inter_channel > num_input_features / 2:
            inter_channel = int(num_input_features / 8) * 4
            print('adjust inter_channel to ', inter_channel)

Y
Yang Nie 已提交
51
        self.branch1a = BasicConv2D(
Y
Yang Nie 已提交
52
            num_input_features, inter_channel, kernel_size=1)
Y
Yang Nie 已提交
53
        self.branch1b = BasicConv2D(
Y
Yang Nie 已提交
54 55
            inter_channel, growth_rate, kernel_size=3, padding=1)

Y
Yang Nie 已提交
56
        self.branch2a = BasicConv2D(
Y
Yang Nie 已提交
57
            num_input_features, inter_channel, kernel_size=1)
Y
Yang Nie 已提交
58
        self.branch2b = BasicConv2D(
Y
Yang Nie 已提交
59
            inter_channel, growth_rate, kernel_size=3, padding=1)
Y
Yang Nie 已提交
60
        self.branch2c = BasicConv2D(
Y
Yang Nie 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74
            growth_rate, growth_rate, kernel_size=3, padding=1)

    def forward(self, x):
        branch1 = self.branch1a(x)
        branch1 = self.branch1b(branch1)

        branch2 = self.branch2a(x)
        branch2 = self.branch2b(branch2)
        branch2 = self.branch2c(branch2)

        return paddle.concat([x, branch1, branch2], 1)


class _DenseBlock(nn.Sequential):
R
root 已提交
75 76
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate,
                 drop_rate):
Y
Yang Nie 已提交
77 78
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
R
root 已提交
79 80
            layer = _DenseLayer(num_input_features + i * growth_rate,
                                growth_rate, bn_size, drop_rate)
Y
Yang Nie 已提交
81 82 83 84 85 86 87
            setattr(self, 'denselayer%d' % (i + 1), layer)


class _StemBlock(nn.Layer):
    def __init__(self, num_input_channels, num_init_features):
        super(_StemBlock, self).__init__()

R
root 已提交
88
        num_stem_features = int(num_init_features / 2)
Y
Yang Nie 已提交
89

Y
Yang Nie 已提交
90
        self.stem1 = BasicConv2D(
R
root 已提交
91 92 93 94 95
            num_input_channels,
            num_init_features,
            kernel_size=3,
            stride=2,
            padding=1)
Y
Yang Nie 已提交
96
        self.stem2a = BasicConv2D(
R
root 已提交
97 98 99 100 101
            num_init_features,
            num_stem_features,
            kernel_size=1,
            stride=1,
            padding=0)
Y
Yang Nie 已提交
102
        self.stem2b = BasicConv2D(
R
root 已提交
103 104 105 106 107
            num_stem_features,
            num_init_features,
            kernel_size=3,
            stride=2,
            padding=1)
Y
Yang Nie 已提交
108
        self.stem3 = BasicConv2D(
R
root 已提交
109 110 111 112 113
            2 * num_init_features,
            num_init_features,
            kernel_size=1,
            stride=1,
            padding=0)
Y
Yang Nie 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        self.pool = nn.MaxPool2D(kernel_size=2, stride=2)

    def forward(self, x):
        out = self.stem1(x)

        branch2 = self.stem2a(out)
        branch2 = self.stem2b(branch2)
        branch1 = self.pool(out)

        out = paddle.concat([branch1, branch2], 1)
        out = self.stem3(out)

        return out


Y
Yang Nie 已提交
129
class BasicConv2D(nn.Layer):
Y
Yang Nie 已提交
130
    def __init__(self, in_channels, out_channels, activation=True, **kwargs):
Y
Yang Nie 已提交
131
        super(BasicConv2D, self).__init__()
R
root 已提交
132 133
        self.conv = nn.Conv2D(
            in_channels, out_channels, bias_attr=False, **kwargs)
Y
Yang Nie 已提交
134 135 136 137 138 139 140 141 142 143 144 145
        self.norm = nn.BatchNorm2D(out_channels)
        self.activation = activation

    def forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        if self.activation:
            return F.relu(x)
        else:
            return x


Y
update  
Yang Nie 已提交
146
class PeleeNetDY(nn.Layer):
Y
Yang Nie 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160
    r"""PeleeNet model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf> and
     "Pelee: A Real-Time Object Detection System on Mobile Devices" <https://arxiv.org/pdf/1804.06882.pdf>`

    Args:
        growth_rate (int or list of 4 ints) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bottleneck_width (int or list of 4 ints) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        class_num (int) - number of classification classes
    """

R
root 已提交
161 162 163 164 165 166 167
    def __init__(self,
                 growth_rate=32,
                 block_config=[3, 4, 8, 6],
                 num_init_features=32,
                 bottleneck_width=[1, 2, 4, 4],
                 drop_rate=0.05,
                 class_num=1000):
Y
Yang Nie 已提交
168

Y
update  
Yang Nie 已提交
169
        super(PeleeNetDY, self).__init__()
Y
Yang Nie 已提交
170

R
root 已提交
171 172
        self.features = nn.Sequential(* [('stemblock', _StemBlock(
            3, num_init_features)), ])
Y
Yang Nie 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

        if type(growth_rate) is list:
            growth_rates = growth_rate
            assert len(growth_rates) == 4, \
                'The growth rate must be the list and the size must be 4'
        else:
            growth_rates = [growth_rate] * 4

        if type(bottleneck_width) is list:
            bottleneck_widths = bottleneck_width
            assert len(bottleneck_widths) == 4, \
                'The bottleneck width must be the list and the size must be 4'
        else:
            bottleneck_widths = [bottleneck_width] * 4

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
R
root 已提交
191 192 193 194 195 196
            block = _DenseBlock(
                num_layers=num_layers,
                num_input_features=num_features,
                bn_size=bottleneck_widths[i],
                growth_rate=growth_rates[i],
                drop_rate=drop_rate)
Y
Yang Nie 已提交
197 198 199
            setattr(self.features, 'denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rates[i]

R
root 已提交
200 201 202 203 204 205 206 207 208
            setattr(
                self.features,
                'transition%d' % (i + 1),
                BasicConv2D(
                    num_features,
                    num_features,
                    kernel_size=1,
                    stride=1,
                    padding=0))
Y
Yang Nie 已提交
209 210

            if i != len(block_config) - 1:
R
root 已提交
211 212 213 214 215
                setattr(
                    self.features,
                    'transition%d_pool' % (i + 1),
                    nn.AvgPool2D(
                        kernel_size=2, stride=2))
Y
Yang Nie 已提交
216 217 218 219 220 221 222 223 224 225
                num_features = num_features

        # Linear layer
        self.classifier = nn.Linear(num_features, class_num)
        self.drop_rate = drop_rate

        self.apply(self._initialize_weights)

    def forward(self, x):
        features = self.features(x)
R
root 已提交
226 227
        out = F.avg_pool2d(
            features, kernel_size=features.shape[2:4]).flatten(1)
Y
Yang Nie 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        if self.drop_rate > 0:
            out = F.dropout(out, p=self.drop_rate, training=self.training)
        out = self.classifier(out)
        return out

    def _initialize_weights(self, m):
        if isinstance(m, nn.Conv2D):
            n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
            normal_(m.weight, std=math.sqrt(2. / n))
            if m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.BatchNorm2D):
            ones_(m.weight)
            zeros_(m.bias)
        elif isinstance(m, nn.Linear):
            normal_(m.weight, std=0.01)
            zeros_(m.bias)


def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


Y
update  
Yang Nie 已提交
260 261
def PeleeNet(pretrained=False, use_ssld=False, **kwargs):
    model = PeleeNetDY(**kwargs)
C
cuicheng01 已提交
262
    _load_pretrained(pretrained, model, MODEL_URLS["PeleeNet"], use_ssld)
Y
Yang Nie 已提交
263
    return model