peleenet.py 8.4 KB
Newer Older
Y
Yang Nie 已提交
1
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
Y
Yang Nie 已提交
2
#
C
cuicheng01 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Y
Yang Nie 已提交
6
#
C
cuicheng01 已提交
7
#    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Nie 已提交
8
#
C
cuicheng01 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yang Nie 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Code was heavily based on https://github.com/Robert-JunWang/PeleeNet
# reference: https://arxiv.org/pdf/1804.06882.pdf

import math

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant

from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
C
cuicheng01 已提交
28
    "PeleeNet": ""  # TODO
Y
Yang Nie 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
}

__all__ = MODEL_URLS.keys()

normal_ = lambda x, mean=0, std=1: Normal(mean, std)(x)
constant_ = lambda x, value=0: Constant(value)(x)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)


class _DenseLayer(nn.Layer):
    def __init__(self, num_input_features, growth_rate, bottleneck_width, drop_rate):
        super(_DenseLayer, self).__init__()

        growth_rate = int(growth_rate / 2)
        inter_channel = int(growth_rate * bottleneck_width / 4) * 4

        if inter_channel > num_input_features / 2:
            inter_channel = int(num_input_features / 8) * 4
            print('adjust inter_channel to ', inter_channel)

Y
Yang Nie 已提交
50
        self.branch1a = BasicConv2D(
Y
Yang Nie 已提交
51
            num_input_features, inter_channel, kernel_size=1)
Y
Yang Nie 已提交
52
        self.branch1b = BasicConv2D(
Y
Yang Nie 已提交
53 54
            inter_channel, growth_rate, kernel_size=3, padding=1)

Y
Yang Nie 已提交
55
        self.branch2a = BasicConv2D(
Y
Yang Nie 已提交
56
            num_input_features, inter_channel, kernel_size=1)
Y
Yang Nie 已提交
57
        self.branch2b = BasicConv2D(
Y
Yang Nie 已提交
58
            inter_channel, growth_rate, kernel_size=3, padding=1)
Y
Yang Nie 已提交
59
        self.branch2c = BasicConv2D(
Y
Yang Nie 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            growth_rate, growth_rate, kernel_size=3, padding=1)

    def forward(self, x):
        branch1 = self.branch1a(x)
        branch1 = self.branch1b(branch1)

        branch2 = self.branch2a(x)
        branch2 = self.branch2b(branch2)
        branch2 = self.branch2c(branch2)

        return paddle.concat([x, branch1, branch2], 1)


class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features + i *
                                growth_rate, growth_rate, bn_size, drop_rate)
            setattr(self, 'denselayer%d' % (i + 1), layer)


class _StemBlock(nn.Layer):
    def __init__(self, num_input_channels, num_init_features):
        super(_StemBlock, self).__init__()

        num_stem_features = int(num_init_features/2)

Y
Yang Nie 已提交
88
        self.stem1 = BasicConv2D(
Y
Yang Nie 已提交
89
            num_input_channels, num_init_features, kernel_size=3, stride=2, padding=1)
Y
Yang Nie 已提交
90
        self.stem2a = BasicConv2D(
Y
Yang Nie 已提交
91
            num_init_features, num_stem_features, kernel_size=1, stride=1, padding=0)
Y
Yang Nie 已提交
92
        self.stem2b = BasicConv2D(
Y
Yang Nie 已提交
93
            num_stem_features, num_init_features, kernel_size=3, stride=2, padding=1)
Y
Yang Nie 已提交
94
        self.stem3 = BasicConv2D(
Y
Yang Nie 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
            2*num_init_features, num_init_features, kernel_size=1, stride=1, padding=0)
        self.pool = nn.MaxPool2D(kernel_size=2, stride=2)

    def forward(self, x):
        out = self.stem1(x)

        branch2 = self.stem2a(out)
        branch2 = self.stem2b(branch2)
        branch1 = self.pool(out)

        out = paddle.concat([branch1, branch2], 1)
        out = self.stem3(out)

        return out


Y
Yang Nie 已提交
111
class BasicConv2D(nn.Layer):
Y
Yang Nie 已提交
112 113

    def __init__(self, in_channels, out_channels, activation=True, **kwargs):
Y
Yang Nie 已提交
114
        super(BasicConv2D, self).__init__()
Y
Yang Nie 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        self.conv = nn.Conv2D(in_channels, out_channels,
                              bias_attr=False, **kwargs)
        self.norm = nn.BatchNorm2D(out_channels)
        self.activation = activation

    def forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        if self.activation:
            return F.relu(x)
        else:
            return x


Y
update  
Yang Nie 已提交
129
class PeleeNetDY(nn.Layer):
Y
Yang Nie 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    r"""PeleeNet model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf> and
     "Pelee: A Real-Time Object Detection System on Mobile Devices" <https://arxiv.org/pdf/1804.06882.pdf>`

    Args:
        growth_rate (int or list of 4 ints) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bottleneck_width (int or list of 4 ints) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        class_num (int) - number of classification classes
    """

    def __init__(self, growth_rate=32, block_config=[3, 4, 8, 6],
                 num_init_features=32, bottleneck_width=[1, 2, 4, 4],
                 drop_rate=0.05, class_num=1000):

Y
update  
Yang Nie 已提交
148
        super(PeleeNetDY, self).__init__()
Y
Yang Nie 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

        self.features = nn.Sequential(*[
            ('stemblock', _StemBlock(3, num_init_features)),
        ])

        if type(growth_rate) is list:
            growth_rates = growth_rate
            assert len(growth_rates) == 4, \
                'The growth rate must be the list and the size must be 4'
        else:
            growth_rates = [growth_rate] * 4

        if type(bottleneck_width) is list:
            bottleneck_widths = bottleneck_width
            assert len(bottleneck_widths) == 4, \
                'The bottleneck width must be the list and the size must be 4'
        else:
            bottleneck_widths = [bottleneck_width] * 4

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers=num_layers,
                                num_input_features=num_features,
                                bn_size=bottleneck_widths[i],
                                growth_rate=growth_rates[i],
                                drop_rate=drop_rate)
            setattr(self.features, 'denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rates[i]

Y
Yang Nie 已提交
179
            setattr(self.features, 'transition%d' % (i + 1), BasicConv2D(
Y
Yang Nie 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
                num_features, num_features, kernel_size=1, stride=1, padding=0))

            if i != len(block_config) - 1:
                setattr(self.features, 'transition%d_pool' %
                        (i + 1), nn.AvgPool2D(kernel_size=2, stride=2))
                num_features = num_features

        # Linear layer
        self.classifier = nn.Linear(num_features, class_num)
        self.drop_rate = drop_rate

        self.apply(self._initialize_weights)

    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, kernel_size=features.shape[2:4]).flatten(1)
        if self.drop_rate > 0:
            out = F.dropout(out, p=self.drop_rate, training=self.training)
        out = self.classifier(out)
        return out

    def _initialize_weights(self, m):
        if isinstance(m, nn.Conv2D):
            n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
            normal_(m.weight, std=math.sqrt(2. / n))
            if m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.BatchNorm2D):
            ones_(m.weight)
            zeros_(m.bias)
        elif isinstance(m, nn.Linear):
            normal_(m.weight, std=0.01)
            zeros_(m.bias)


def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


Y
update  
Yang Nie 已提交
228 229
def PeleeNet(pretrained=False, use_ssld=False, **kwargs):
    model = PeleeNetDY(**kwargs)
C
cuicheng01 已提交
230
    _load_pretrained(pretrained, model, MODEL_URLS["PeleeNet"], use_ssld)
Y
Yang Nie 已提交
231
    return model