提交 eb6e0d10 编写于 作者: Y Yang Nie

fix typo

上级 62e06ced
# MIT License # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
# #
# Copyright (c) Meta Platforms, Inc. and affiliates. # MIT License
# #
# Permission is hereby granted, free of charge, to any person obtaining a copy # Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal # of this software and associated documentation files (the "Software"), to deal
...@@ -55,16 +55,16 @@ class _DenseLayer(nn.Layer): ...@@ -55,16 +55,16 @@ class _DenseLayer(nn.Layer):
inter_channel = int(num_input_features / 8) * 4 inter_channel = int(num_input_features / 8) * 4
print('adjust inter_channel to ', inter_channel) print('adjust inter_channel to ', inter_channel)
self.branch1a = BasicConv2d( self.branch1a = BasicConv2D(
num_input_features, inter_channel, kernel_size=1) num_input_features, inter_channel, kernel_size=1)
self.branch1b = BasicConv2d( self.branch1b = BasicConv2D(
inter_channel, growth_rate, kernel_size=3, padding=1) inter_channel, growth_rate, kernel_size=3, padding=1)
self.branch2a = BasicConv2d( self.branch2a = BasicConv2D(
num_input_features, inter_channel, kernel_size=1) num_input_features, inter_channel, kernel_size=1)
self.branch2b = BasicConv2d( self.branch2b = BasicConv2D(
inter_channel, growth_rate, kernel_size=3, padding=1) inter_channel, growth_rate, kernel_size=3, padding=1)
self.branch2c = BasicConv2d( self.branch2c = BasicConv2D(
growth_rate, growth_rate, kernel_size=3, padding=1) growth_rate, growth_rate, kernel_size=3, padding=1)
def forward(self, x): def forward(self, x):
...@@ -93,13 +93,13 @@ class _StemBlock(nn.Layer): ...@@ -93,13 +93,13 @@ class _StemBlock(nn.Layer):
num_stem_features = int(num_init_features/2) num_stem_features = int(num_init_features/2)
self.stem1 = BasicConv2d( self.stem1 = BasicConv2D(
num_input_channels, num_init_features, kernel_size=3, stride=2, padding=1) num_input_channels, num_init_features, kernel_size=3, stride=2, padding=1)
self.stem2a = BasicConv2d( self.stem2a = BasicConv2D(
num_init_features, num_stem_features, kernel_size=1, stride=1, padding=0) num_init_features, num_stem_features, kernel_size=1, stride=1, padding=0)
self.stem2b = BasicConv2d( self.stem2b = BasicConv2D(
num_stem_features, num_init_features, kernel_size=3, stride=2, padding=1) num_stem_features, num_init_features, kernel_size=3, stride=2, padding=1)
self.stem3 = BasicConv2d( self.stem3 = BasicConv2D(
2*num_init_features, num_init_features, kernel_size=1, stride=1, padding=0) 2*num_init_features, num_init_features, kernel_size=1, stride=1, padding=0)
self.pool = nn.MaxPool2D(kernel_size=2, stride=2) self.pool = nn.MaxPool2D(kernel_size=2, stride=2)
...@@ -116,10 +116,10 @@ class _StemBlock(nn.Layer): ...@@ -116,10 +116,10 @@ class _StemBlock(nn.Layer):
return out return out
class BasicConv2d(nn.Layer): class BasicConv2D(nn.Layer):
def __init__(self, in_channels, out_channels, activation=True, **kwargs): def __init__(self, in_channels, out_channels, activation=True, **kwargs):
super(BasicConv2d, self).__init__() super(BasicConv2D, self).__init__()
self.conv = nn.Conv2D(in_channels, out_channels, self.conv = nn.Conv2D(in_channels, out_channels,
bias_attr=False, **kwargs) bias_attr=False, **kwargs)
self.norm = nn.BatchNorm2D(out_channels) self.norm = nn.BatchNorm2D(out_channels)
...@@ -184,7 +184,7 @@ class PeleeNetDY(nn.Layer): ...@@ -184,7 +184,7 @@ class PeleeNetDY(nn.Layer):
setattr(self.features, 'denseblock%d' % (i + 1), block) setattr(self.features, 'denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rates[i] num_features = num_features + num_layers * growth_rates[i]
setattr(self.features, 'transition%d' % (i + 1), BasicConv2d( setattr(self.features, 'transition%d' % (i + 1), BasicConv2D(
num_features, num_features, kernel_size=1, stride=1, padding=0)) num_features, num_features, kernel_size=1, stride=1, padding=0))
if i != len(block_config) - 1: if i != len(block_config) - 1:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册