peleenet.py 8.9 KB
Newer Older
Y
Yang Nie 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Code was heavily based on https://github.com/Robert-JunWang/PeleeNet
# reference: https://arxiv.org/pdf/1804.06882.pdf

import math

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant

from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
    "peleenet": ""  # TODO
}

__all__ = MODEL_URLS.keys()

normal_ = lambda x, mean=0, std=1: Normal(mean, std)(x)
constant_ = lambda x, value=0: Constant(value)(x)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)


class _DenseLayer(nn.Layer):
    def __init__(self, num_input_features, growth_rate, bottleneck_width, drop_rate):
        super(_DenseLayer, self).__init__()

        growth_rate = int(growth_rate / 2)
        inter_channel = int(growth_rate * bottleneck_width / 4) * 4

        if inter_channel > num_input_features / 2:
            inter_channel = int(num_input_features / 8) * 4
            print('adjust inter_channel to ', inter_channel)

        self.branch1a = BasicConv2d(
            num_input_features, inter_channel, kernel_size=1)
        self.branch1b = BasicConv2d(
            inter_channel, growth_rate, kernel_size=3, padding=1)

        self.branch2a = BasicConv2d(
            num_input_features, inter_channel, kernel_size=1)
        self.branch2b = BasicConv2d(
            inter_channel, growth_rate, kernel_size=3, padding=1)
        self.branch2c = BasicConv2d(
            growth_rate, growth_rate, kernel_size=3, padding=1)

    def forward(self, x):
        branch1 = self.branch1a(x)
        branch1 = self.branch1b(branch1)

        branch2 = self.branch2a(x)
        branch2 = self.branch2b(branch2)
        branch2 = self.branch2c(branch2)

        return paddle.concat([x, branch1, branch2], 1)


class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features + i *
                                growth_rate, growth_rate, bn_size, drop_rate)
            setattr(self, 'denselayer%d' % (i + 1), layer)


class _StemBlock(nn.Layer):
    def __init__(self, num_input_channels, num_init_features):
        super(_StemBlock, self).__init__()

        num_stem_features = int(num_init_features/2)

        self.stem1 = BasicConv2d(
            num_input_channels, num_init_features, kernel_size=3, stride=2, padding=1)
        self.stem2a = BasicConv2d(
            num_init_features, num_stem_features, kernel_size=1, stride=1, padding=0)
        self.stem2b = BasicConv2d(
            num_stem_features, num_init_features, kernel_size=3, stride=2, padding=1)
        self.stem3 = BasicConv2d(
            2*num_init_features, num_init_features, kernel_size=1, stride=1, padding=0)
        self.pool = nn.MaxPool2D(kernel_size=2, stride=2)

    def forward(self, x):
        out = self.stem1(x)

        branch2 = self.stem2a(out)
        branch2 = self.stem2b(branch2)
        branch1 = self.pool(out)

        out = paddle.concat([branch1, branch2], 1)
        out = self.stem3(out)

        return out


class BasicConv2d(nn.Layer):

    def __init__(self, in_channels, out_channels, activation=True, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2D(in_channels, out_channels,
                              bias_attr=False, **kwargs)
        self.norm = nn.BatchNorm2D(out_channels)
        self.activation = activation

    def forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        if self.activation:
            return F.relu(x)
        else:
            return x


Y
update  
Yang Nie 已提交
137
class PeleeNetDY(nn.Layer):
Y
Yang Nie 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    r"""PeleeNet model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf> and
     "Pelee: A Real-Time Object Detection System on Mobile Devices" <https://arxiv.org/pdf/1804.06882.pdf>`

    Args:
        growth_rate (int or list of 4 ints) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bottleneck_width (int or list of 4 ints) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        class_num (int) - number of classification classes
    """

    def __init__(self, growth_rate=32, block_config=[3, 4, 8, 6],
                 num_init_features=32, bottleneck_width=[1, 2, 4, 4],
                 drop_rate=0.05, class_num=1000):

Y
update  
Yang Nie 已提交
156
        super(PeleeNetDY, self).__init__()
Y
Yang Nie 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

        self.features = nn.Sequential(*[
            ('stemblock', _StemBlock(3, num_init_features)),
        ])

        if type(growth_rate) is list:
            growth_rates = growth_rate
            assert len(growth_rates) == 4, \
                'The growth rate must be the list and the size must be 4'
        else:
            growth_rates = [growth_rate] * 4

        if type(bottleneck_width) is list:
            bottleneck_widths = bottleneck_width
            assert len(bottleneck_widths) == 4, \
                'The bottleneck width must be the list and the size must be 4'
        else:
            bottleneck_widths = [bottleneck_width] * 4

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers=num_layers,
                                num_input_features=num_features,
                                bn_size=bottleneck_widths[i],
                                growth_rate=growth_rates[i],
                                drop_rate=drop_rate)
            setattr(self.features, 'denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rates[i]

            setattr(self.features, 'transition%d' % (i + 1), BasicConv2d(
                num_features, num_features, kernel_size=1, stride=1, padding=0))

            if i != len(block_config) - 1:
                setattr(self.features, 'transition%d_pool' %
                        (i + 1), nn.AvgPool2D(kernel_size=2, stride=2))
                num_features = num_features

        # Linear layer
        self.classifier = nn.Linear(num_features, class_num)
        self.drop_rate = drop_rate

        self.apply(self._initialize_weights)

    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, kernel_size=features.shape[2:4]).flatten(1)
        if self.drop_rate > 0:
            out = F.dropout(out, p=self.drop_rate, training=self.training)
        out = self.classifier(out)
        return out

    def _initialize_weights(self, m):
        if isinstance(m, nn.Conv2D):
            n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
            normal_(m.weight, std=math.sqrt(2. / n))
            if m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.BatchNorm2D):
            ones_(m.weight)
            zeros_(m.bias)
        elif isinstance(m, nn.Linear):
            normal_(m.weight, std=0.01)
            zeros_(m.bias)


def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


Y
update  
Yang Nie 已提交
236 237
def PeleeNet(pretrained=False, use_ssld=False, **kwargs):
    model = PeleeNetDY(**kwargs)
Y
Yang Nie 已提交
238 239
    _load_pretrained(pretrained, model, MODEL_URLS["peleenet"], use_ssld)
    return model