efficientnet.py 28.4 KB
Newer Older
1 2 3 4 5
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
W
WuHaobo 已提交
6 7 8 9 10
import collections
import re
import copy

__all__ = [
11 12 13
    'EfficientNet', 'EfficientNetB0_small', 'EfficientNetB0', 'EfficientNetB1',
    'EfficientNetB2', 'EfficientNetB3', 'EfficientNetB4', 'EfficientNetB5',
    'EfficientNetB6', 'EfficientNetB7'
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
]

GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum',
    'batch_norm_epsilon',
    'dropout_rate',
    'num_classes',
    'width_coefficient',
    'depth_coefficient',
    'depth_divisor',
    'min_depth',
    'drop_connect_rate',
])

BlockArgs = collections.namedtuple('BlockArgs', [
    'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
    'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])

GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)


def efficientnet_params(model_name):
    """ Map EfficientNet model name to parameter coefficients. """
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None,
                 depth_coefficient=None,
                 dropout_rate=0.2,
                 drop_connect_rate=0.2):
    """ Get block arguments according to parameter and coefficients. """
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        num_classes=1000,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None)

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """ Get the block args and global params for a given model """
    if model_name.startswith('efficientnet'):
        w, d, _, p = efficientnet_params(model_name)
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p)
    else:
        raise NotImplementedError('model name is not pre-defined: %s' %
                                  model_name)
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


def round_filters(filters, global_params):
    """ Calculate and round number of filters based on depth multiplier. """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth,
                      int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """ Round number of filters based on depth multiplier. """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


class BlockDecoder(object):
littletomatodonkey's avatar
littletomatodonkey 已提交
122 123 124
    """
    Block Decoder, straight from the official TensorFlow repository.
    """
W
WuHaobo 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    @staticmethod
    def _decode_block_string(block_string):
        """ Gets a block through a string notation of arguments. """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
littletomatodonkey's avatar
littletomatodonkey 已提交
140
        cond_1 = ('s' in options and len(options['s']) == 1)
S
shippingwang 已提交
141 142
        cond_2 = ((len(options['s']) == 2) and
                  (options['s'][0] == options['s'][1]))
littletomatodonkey's avatar
littletomatodonkey 已提交
143
        assert (cond_1 or cond_2)
W
WuHaobo 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

        return BlockArgs(
            kernel_size=int(options['k']),
            num_repeat=int(options['r']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            expand_ratio=int(options['e']),
            id_skip=('noskip' not in block_string),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=[int(options['s'][0])])

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
            'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
            (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
            'i%d' % block.input_filters, 'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """
littletomatodonkey's avatar
littletomatodonkey 已提交
172
        Decode a list of string notations to specify blocks in the network.
W
WuHaobo 已提交
173

littletomatodonkey's avatar
littletomatodonkey 已提交
174 175 176
        string_list: list of strings, each string is a notation of block
        return
            list of BlockArgs namedtuples of block args
W
WuHaobo 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """
        Encodes a list of BlockArgs to a list of strings.

        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
def initial_type(name, use_bias=False):
    param_attr = ParamAttr(name=name + "_weights")
    if use_bias:
        bias_attr = ParamAttr(name=name + "_offset")
    else:
        bias_attr = False
    return param_attr, bias_attr


def init_batch_norm_layer(name="batch_norm"):
    param_attr = ParamAttr(name=name + "_scale")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def init_fc_layer(name="fc"):
    param_attr = ParamAttr(name=name + "_weights")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


inp_shape = {
    "b0_small": [224, 112, 112, 56, 28, 14, 14, 7],
    "b0": [224, 112, 112, 56, 28, 14, 14, 7],
    "b1": [240, 120, 120, 60, 30, 15, 15, 8],
    "b2": [260, 130, 130, 65, 33, 17, 17, 9],
    "b3": [300, 150, 150, 75, 38, 19, 19, 10],
    "b4": [380, 190, 190, 95, 48, 24, 24, 12],
    "b5": [456, 228, 228, 114, 57, 29, 29, 15],
    "b6": [528, 264, 264, 132, 66, 33, 33, 17],
    "b7": [600, 300, 300, 150, 75, 38, 38, 19]
}


def _drop_connect(inputs, prob, is_test):
    if is_test:
        return inputs
    keep_prob = 1.0 - prob
    inputs_shape = fluid.layers.shape(inputs)
    random_tensor = keep_prob + fluid.layers.uniform_random(
        shape=[inputs_shape[0], 1, 1, 1], min=0., max=1.)
    binary_tensor = fluid.layers.floor(random_tensor)
    output = inputs / keep_prob * binary_tensor
    return output


W
fix  
wqz960 已提交
253
class Conv2ds(fluid.dygraph.Layer):
254 255 256 257 258 259 260 261 262 263 264 265 266
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=None,
                 name="conv2d",
                 act=None,
                 use_bias=False,
                 padding_type=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
267
        super(Conv2ds, self).__init__()
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

        param_attr, bias_attr = initial_type(name=name, use_bias=use_bias)

        def get_padding(filter_size, stride=1, dilation=1):
            padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
            return padding

        inps = 1 if model_name == None and cur_stage == None else inp_shape[
            model_name][cur_stage]
        self.need_crop = False
        if padding_type == "SAME":
            top_padding, bottom_padding = cal_padding(inps, stride,
                                                      filter_size)
            left_padding, right_padding = cal_padding(inps, stride,
                                                      filter_size)
            height_padding = bottom_padding
            width_padding = right_padding
            if top_padding != bottom_padding or left_padding != right_padding:
                height_padding = top_padding + stride
                width_padding = left_padding + stride
                self.need_crop = True
            padding = [height_padding, width_padding]
        elif padding_type == "VALID":
            height_padding = 0
            width_padding = 0
            padding = [height_padding, width_padding]
        elif padding_type == "DYNAMIC":
            padding = get_padding(filter_size, stride)
        else:
            padding = padding_type

        self._conv = Conv2D(
            input_channels,
            output_channels,
            filter_size,
            groups=groups,
            stride=stride,
            act=act,
            padding=padding,
            param_attr=param_attr,
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._conv(inputs)
        if self.need_crop:
            x = x[:, :, 1:, 1:]
        return x


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 filter_size,
                 output_channels,
                 stride=1,
                 num_groups=1,
                 padding_type="SAME",
                 conv_act=None,
                 bn_act="swish",
                 use_bn=True,
                 use_bias=False,
                 name=None,
                 conv_name=None,
                 bn_name=None,
                 model_name=None,
                 cur_stage=None):
        super(ConvBNLayer, self).__init__()

W
fix  
wqz960 已提交
336
        self._conv = Conv2ds(
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            input_channels=input_channels,
            output_channels=output_channels,
            filter_size=filter_size,
            stride=stride,
            groups=num_groups,
            act=conv_act,
            padding_type=padding_type,
            name=conv_name,
            use_bias=use_bias,
            model_name=model_name,
            cur_stage=cur_stage)
        self.use_bn = use_bn
        if use_bn is True:
            bn_name = name + bn_name
            param_attr, bias_attr = init_batch_norm_layer(bn_name)

            self._bn = BatchNorm(
                num_channels=output_channels,
                act=bn_act,
                momentum=0.99,
                epsilon=0.001,
                moving_mean_name=bn_name + "_mean",
                moving_variance_name=bn_name + "_variance",
                param_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        if self.use_bn:
            x = self._conv(inputs)
            x = self._bn(x)
            return x
        else:
            return self._conv(inputs)


W
fix  
wqz960 已提交
372
class ExpandConvNorm(fluid.dygraph.Layer):
373 374 375 376 377 378 379
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
380
        super(ExpandConvNorm, self).__init__()
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

        self.oup = block_args.input_filters * block_args.expand_ratio
        self.expand_ratio = block_args.expand_ratio

        if self.expand_ratio != 1:
            self._conv = ConvBNLayer(
                input_channels,
                1,
                self.oup,
                bn_act=None,
                padding_type=padding_type,
                name=name,
                conv_name=name + "_expand_conv",
                bn_name="_bn0",
                model_name=model_name,
                cur_stage=cur_stage)

    def forward(self, inputs):
        if self.expand_ratio != 1:
            return self._conv(inputs)
        else:
            return inputs


W
wqz960 已提交
405
class DepthwiseConvNorm(fluid.dygraph.Layer):
406 407 408 409 410 411 412
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
413
        super(DepthwiseConvNorm, self).__init__()
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

        self.k = block_args.kernel_size
        self.s = block_args.stride
        if isinstance(self.s, list) or isinstance(self.s, tuple):
            self.s = self.s[0]
        oup = block_args.input_filters * block_args.expand_ratio

        self._conv = ConvBNLayer(
            input_channels,
            self.k,
            oup,
            self.s,
            num_groups=input_channels,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_depthwise_conv",
            bn_name="_bn1",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


W
wqz960 已提交
439
class ProjectConvNorm(fluid.dygraph.Layer):
440 441 442 443 444 445 446
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
447
        super(ProjectConvNorm, self).__init__()
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

        final_oup = block_args.output_filters

        self._conv = ConvBNLayer(
            input_channels,
            1,
            final_oup,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_project_conv",
            bn_name="_bn2",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


W
fix  
wqz960 已提交
467
class SEBlock(fluid.dygraph.Layer):
468 469 470 471 472 473 474 475
    def __init__(self,
                 input_channels,
                 num_squeezed_channels,
                 oup,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
476
        super(SEBlock, self).__init__()
477 478 479

        self._pool = Pool2D(
            pool_type="avg", global_pooling=True, use_cudnn=False)
W
fix  
wqz960 已提交
480
        self._conv1 = Conv2ds(
481 482 483 484 485 486 487 488
            input_channels,
            num_squeezed_channels,
            1,
            use_bias=True,
            padding_type=padding_type,
            act="swish",
            name=name + "_se_reduce")

W
fix  
wqz960 已提交
489
        self._conv2 = Conv2ds(
490 491 492
            num_squeezed_channels,
            oup,
            1,
littletomatodonkey's avatar
littletomatodonkey 已提交
493
            act="sigmoid",
494 495 496 497 498 499 500 501 502 503 504
            use_bias=True,
            padding_type=padding_type,
            name=name + "_se_expand")

    def forward(self, inputs):
        x = self._pool(inputs)
        x = self._conv1(x)
        x = self._conv2(x)
        return fluid.layers.elementwise_mul(inputs, x)


W
fix  
wqz960 已提交
505
class MbConvBlock(fluid.dygraph.Layer):
506 507 508 509 510 511 512 513 514 515
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 use_se,
                 name=None,
                 drop_connect_rate=None,
                 is_test=False,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
516
        super(MbConvBlock, self).__init__()
517 518 519 520 521 522 523 524 525 526 527

        oup = block_args.input_filters * block_args.expand_ratio
        self.block_args = block_args
        self.has_se = use_se and (block_args.se_ratio is not None) and (
            0 < block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip
        self.expand_ratio = block_args.expand_ratio
        self.drop_connect_rate = drop_connect_rate
        self.is_test = is_test

        if self.expand_ratio != 1:
W
fix  
wqz960 已提交
528
            self._ecn = ExpandConvNorm(
529 530 531 532 533 534 535
                input_channels,
                block_args,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
536
        self._dcn = DepthwiseConvNorm(
537 538 539 540 541 542 543 544 545 546
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

        if self.has_se:
            num_squeezed_channels = max(
                1, int(block_args.input_filters * block_args.se_ratio))
W
fix  
wqz960 已提交
547
            self._se = SEBlock(
548 549 550 551 552 553 554 555
                input_channels * block_args.expand_ratio,
                num_squeezed_channels,
                oup,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
556
        self._pcn = ProjectConvNorm(
557 558 559 560 561 562 563 564 565 566 567
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        x = inputs
        if self.expand_ratio != 1:
            x = self._ecn(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
568
            x = fluid.layers.swish(x)
569
        x = self._dcn(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
570
        x = fluid.layers.swish(x)
571 572 573
        if self.has_se:
            x = self._se(x)
        x = self._pcn(x)
W
fix  
wqz960 已提交
574
        if self.id_skip and \
littletomatodonkey's avatar
littletomatodonkey 已提交
575 576
                self.block_args.stride == 1 and \
                self.block_args.input_filters == self.block_args.output_filters:
577 578 579 580 581 582
            if self.drop_connect_rate:
                x = _drop_connect(x, self.drop_connect_rate, self.is_test)
            x = fluid.layers.elementwise_add(x, inputs)
        return x


W
fix  
wqz960 已提交
583
class ConvStemNorm(fluid.dygraph.Layer):
584 585 586 587 588 589 590
    def __init__(self,
                 input_channels,
                 padding_type,
                 _global_params,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
591
        super(ConvStemNorm, self).__init__()
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

        output_channels = round_filters(32, _global_params)
        self._conv = ConvBNLayer(
            input_channels,
            filter_size=3,
            output_channels=output_channels,
            stride=2,
            bn_act=None,
            padding_type=padding_type,
            name="",
            conv_name="_conv_stem",
            bn_name="_bn0",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


W
fix  
wqz960 已提交
611
class ExtractFeatures(fluid.dygraph.Layer):
612 613 614 615 616 617 618 619
    def __init__(self,
                 input_channels,
                 _block_args,
                 _global_params,
                 padding_type,
                 use_se,
                 is_test,
                 model_name=None):
W
fix  
wqz960 已提交
620
        super(ExtractFeatures, self).__init__()
621 622 623

        self._global_params = _global_params

W
fix  
wqz960 已提交
624
        self._conv_stem = ConvStemNorm(
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
            input_channels,
            padding_type=padding_type,
            _global_params=_global_params,
            model_name=model_name,
            cur_stage=0)

        self.block_args_copy = copy.deepcopy(_block_args)
        idx = 0
        block_size = 0
        for block_arg in self.block_args_copy:
            block_arg = block_arg._replace(
                input_filters=round_filters(block_arg.input_filters,
                                            _global_params),
                output_filters=round_filters(block_arg.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_arg.num_repeat, _global_params))
            block_size += 1
            for _ in range(block_arg.num_repeat - 1):
                block_size += 1

        self.conv_seq = []
        cur_stage = 1
        for block_args in _block_args:
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            _global_params),
                output_filters=round_filters(block_args.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         _global_params))

            drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / block_size

            _mc_block = self.add_sublayer(
                "_blocks." + str(idx) + ".",
W
fix  
wqz960 已提交
662
                MbConvBlock(
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
                    block_args.input_filters,
                    block_args=block_args,
                    padding_type=padding_type,
                    use_se=use_se,
                    name="_blocks." + str(idx) + ".",
                    drop_connect_rate=drop_connect_rate,
                    model_name=model_name,
                    cur_stage=cur_stage))
            self.conv_seq.append(_mc_block)
            idx += 1
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
                if drop_connect_rate:
                    drop_connect_rate *= float(idx) / block_size
                _mc_block = self.add_sublayer(
                    "block." + str(idx) + ".",
W
fix  
wqz960 已提交
682
                    MbConvBlock(
683 684 685 686 687 688 689 690 691 692 693 694 695 696
                        block_args.input_filters,
                        block_args,
                        padding_type=padding_type,
                        use_se=use_se,
                        name="_blocks." + str(idx) + ".",
                        drop_connect_rate=drop_connect_rate,
                        model_name=model_name,
                        cur_stage=cur_stage))
                self.conv_seq.append(_mc_block)
                idx += 1
            cur_stage += 1

    def forward(self, inputs):
        x = self._conv_stem(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
697
        x = fluid.layers.swish(x)
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        for _mc_block in self.conv_seq:
            x = _mc_block(x)
        return x


class EfficientNet(fluid.dygraph.Layer):
    def __init__(self,
                 name="b0",
                 is_test=True,
                 padding_type="SAME",
                 override_params=None,
                 use_se=True,
                 class_dim=1000):
        super(EfficientNet, self).__init__()

        model_name = 'efficientnet-' + name
        self.name = name
        self._block_args, self._global_params = get_model_params(
            model_name, override_params)
        self.padding_type = padding_type
        self.use_se = use_se
        self.is_test = is_test

W
fix  
wqz960 已提交
721
        self._ef = ExtractFeatures(
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
            3,
            self._block_args,
            self._global_params,
            self.padding_type,
            self.use_se,
            self.is_test,
            model_name=self.name)

        output_channels = round_filters(1280, self._global_params)
        if name == "b0_small" or name == "b0" or name == "b1":
            oup = 320
        elif name == "b2":
            oup = 352
        elif name == "b3":
            oup = 384
        elif name == "b4":
            oup = 448
        elif name == "b5":
            oup = 512
        elif name == "b6":
            oup = 576
        elif name == "b7":
            oup = 640
        self._conv = ConvBNLayer(
            oup,
            1,
            output_channels,
            bn_act="swish",
            padding_type=self.padding_type,
            name="",
            conv_name="_conv_head",
            bn_name="_bn1",
            model_name=self.name,
            cur_stage=7)
        self._pool = Pool2D(pool_type="avg", global_pooling=True)

        if self._global_params.dropout_rate:
            self._drop = Dropout(
                p=self._global_params.dropout_rate,
                dropout_implementation="upscale_in_train")

        param_attr, bias_attr = init_fc_layer("_fc")
        self._fc = Linear(
            output_channels,
            class_dim,
            param_attr=param_attr,
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._ef(inputs)
        x = self._conv(x)
        x = self._pool(x)
        if self._global_params.dropout_rate:
            x = self._drop(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        x = self._fc(x)
        return x


def EfficientNetB0_small(is_test=True,
                         padding_type='DYNAMIC',
                         override_params=None,
W
wqz960 已提交
784 785
                         use_se=False,
                         **args):
W
WuHaobo 已提交
786 787
    model = EfficientNet(
        name='b0',
W
fix  
wqz960 已提交
788
        is_test=is_test,
W
WuHaobo 已提交
789 790
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
791 792
        use_se=use_se,
        **args)
W
WuHaobo 已提交
793 794 795
    return model


796 797 798
def EfficientNetB0(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
799 800
                   use_se=True,
                   **args):
littletomatodonkey's avatar
littletomatodonkey 已提交
801 802
    model = EfficientNet(
        name='b0',
W
fix  
wqz960 已提交
803
        is_test=is_test,
littletomatodonkey's avatar
littletomatodonkey 已提交
804 805
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
806 807
        use_se=use_se,
        **args)
littletomatodonkey's avatar
littletomatodonkey 已提交
808 809 810
    return model


W
WuHaobo 已提交
811 812 813
def EfficientNetB1(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
814 815
                   use_se=True,
                   **args):
W
WuHaobo 已提交
816 817
    model = EfficientNet(
        name='b1',
W
fix  
wqz960 已提交
818
        is_test=is_test,
W
WuHaobo 已提交
819 820
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
821 822
        use_se=use_se,
        **args)
W
WuHaobo 已提交
823 824 825 826 827 828
    return model


def EfficientNetB2(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
829 830
                   use_se=True,
                   **args):
W
WuHaobo 已提交
831 832
    model = EfficientNet(
        name='b2',
W
fix  
wqz960 已提交
833
        is_test=is_test,
W
WuHaobo 已提交
834 835
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
836 837
        use_se=use_se,
        **args)
W
WuHaobo 已提交
838 839 840 841 842 843
    return model


def EfficientNetB3(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
844 845
                   use_se=True,
                   **args):
W
WuHaobo 已提交
846 847
    model = EfficientNet(
        name='b3',
W
fix  
wqz960 已提交
848
        is_test=is_test,
W
WuHaobo 已提交
849 850
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
851 852
        use_se=use_se,
        **args)
W
WuHaobo 已提交
853 854 855 856 857 858
    return model


def EfficientNetB4(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
859 860
                   use_se=True,
                   **args):
W
WuHaobo 已提交
861 862
    model = EfficientNet(
        name='b4',
W
fix  
wqz960 已提交
863
        is_test=is_test,
W
WuHaobo 已提交
864 865
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
866 867
        use_se=use_se,
        **args)
W
WuHaobo 已提交
868 869 870 871 872 873
    return model


def EfficientNetB5(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
874 875
                   use_se=True,
                   **args):
W
WuHaobo 已提交
876 877
    model = EfficientNet(
        name='b5',
W
fix  
wqz960 已提交
878
        is_test=is_test,
W
WuHaobo 已提交
879 880
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
881 882
        use_se=use_se,
        **args)
W
WuHaobo 已提交
883 884 885 886 887 888
    return model


def EfficientNetB6(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
889 890
                   use_se=True,
                   **args):
W
WuHaobo 已提交
891 892
    model = EfficientNet(
        name='b6',
W
fix  
wqz960 已提交
893
        is_test=is_test,
W
WuHaobo 已提交
894 895
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
896 897
        use_se=use_se,
        **args)
W
WuHaobo 已提交
898 899 900 901 902 903
    return model


def EfficientNetB7(is_test=False,
                   padding_type='SAME',
                   override_params=None,
W
wqz960 已提交
904 905
                   use_se=True,
                   **args):
W
WuHaobo 已提交
906 907
    model = EfficientNet(
        name='b7',
W
fix  
wqz960 已提交
908
        is_test=is_test,
W
WuHaobo 已提交
909 910
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
911 912
        use_se=use_se,
        **args)
littletomatodonkey's avatar
littletomatodonkey 已提交
913
    return model