operators.py 16.4 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

G
gaotingquan 已提交
20
from functools import partial
F
Felix 已提交
21 22 23 24 25
import six
import math
import random
import cv2
import numpy as np
H
HydrogenSulfate 已提交
26
from PIL import Image, ImageOps, __version__ as PILLOW_VERSION
G
gaotingquan 已提交
27
from paddle.vision.transforms import ColorJitter as RawColorJitter
H
HydrogenSulfate 已提交
28
from paddle.vision.transforms import ToTensor, Normalize
F
Felix 已提交
29 30 31

from .autoaugment import ImageNetPolicy
from .functional import augmentations
G
gaotingquan 已提交
32 33 34 35
from ppcls.utils import logger


class UnifiedResize(object):
H
HydrogenSulfate 已提交
36
    def __init__(self, interpolation=None, backend="cv2", return_numpy=True):
G
gaotingquan 已提交
37 38 39 40 41
        _cv2_interp_from_str = {
            'nearest': cv2.INTER_NEAREST,
            'bilinear': cv2.INTER_LINEAR,
            'area': cv2.INTER_AREA,
            'bicubic': cv2.INTER_CUBIC,
42 43
            'lanczos': cv2.INTER_LANCZOS4,
            'random': (cv2.INTER_LINEAR, cv2.INTER_CUBIC)
G
gaotingquan 已提交
44 45 46 47 48 49 50
        }
        _pil_interp_from_str = {
            'nearest': Image.NEAREST,
            'bilinear': Image.BILINEAR,
            'bicubic': Image.BICUBIC,
            'box': Image.BOX,
            'lanczos': Image.LANCZOS,
51 52
            'hamming': Image.HAMMING,
            'random': (Image.BILINEAR, Image.BICUBIC)
G
gaotingquan 已提交
53 54
        }

55 56 57 58 59
        def _cv2_resize(src, size, resample):
            if isinstance(resample, tuple):
                resample = random.choice(resample)
            return cv2.resize(src, size, interpolation=resample)

H
HydrogenSulfate 已提交
60
        def _pil_resize(src, size, resample, return_numpy=True):
61 62
            if isinstance(resample, tuple):
                resample = random.choice(resample)
H
HydrogenSulfate 已提交
63 64
            if isinstance(src, np.ndarray):
                pil_img = Image.fromarray(src)
H
HydrogenSulfate 已提交
65 66
            else:
                pil_img = src
G
gaotingquan 已提交
67
            pil_img = pil_img.resize(size, resample)
H
HydrogenSulfate 已提交
68 69 70
            if return_numpy:
                return np.asarray(pil_img)
            return pil_img
G
gaotingquan 已提交
71 72 73 74

        if backend.lower() == "cv2":
            if isinstance(interpolation, str):
                interpolation = _cv2_interp_from_str[interpolation.lower()]
75
            # compatible with opencv < version 4.4.0
G
gaotingquan 已提交
76
            elif interpolation is None:
77
                interpolation = cv2.INTER_LINEAR
78
            self.resize_func = partial(_cv2_resize, resample=interpolation)
G
gaotingquan 已提交
79 80 81
        elif backend.lower() == "pil":
            if isinstance(interpolation, str):
                interpolation = _pil_interp_from_str[interpolation.lower()]
H
HydrogenSulfate 已提交
82 83
            self.resize_func = partial(
                _pil_resize, resample=interpolation, return_numpy=return_numpy)
G
gaotingquan 已提交
84 85 86 87 88 89 90
        else:
            logger.warning(
                f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
            )
            self.resize_func = cv2.resize

    def __call__(self, src, size):
H
HydrogenSulfate 已提交
91 92
        if isinstance(size, list):
            size = tuple(size)
G
gaotingquan 已提交
93
        return self.resize_func(src, size)
F
Felix 已提交
94

D
dongshuilong 已提交
95

F
Felix 已提交
96 97 98 99 100
class OperatorParamError(ValueError):
    """ OperatorParamError
    """
    pass

D
dongshuilong 已提交
101

F
Felix 已提交
102 103 104 105 106 107 108 109 110
class DecodeImage(object):
    """ decode image """

    def __init__(self, to_rgb=True, to_np=False, channel_first=False):
        self.to_rgb = to_rgb
        self.to_np = to_np  # to numpy
        self.channel_first = channel_first  # only enabled when to_np is True

    def __call__(self, img):
H
HydrogenSulfate 已提交
111 112 113 114 115 116 117 118 119
        if not isinstance(img, np.ndarray):
            if six.PY2:
                assert type(img) is str and len(
                    img) > 0, "invalid input 'img' in DecodeImage"
            else:
                assert type(img) is bytes and len(
                    img) > 0, "invalid input 'img' in DecodeImage"
            data = np.frombuffer(img, dtype='uint8')
            img = cv2.imdecode(data, 1)
F
Felix 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133
        if self.to_rgb:
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
                img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        return img


class ResizeImage(object):
    """ resize image """

G
gaotingquan 已提交
134 135 136 137
    def __init__(self,
                 size=None,
                 resize_short=None,
                 interpolation=None,
H
HydrogenSulfate 已提交
138 139
                 backend="cv2",
                 return_numpy=True):
F
Felix 已提交
140 141 142 143 144 145 146 147 148 149 150 151
        if resize_short is not None and resize_short > 0:
            self.resize_short = resize_short
            self.w = None
            self.h = None
        elif size is not None:
            self.resize_short = None
            self.w = size if type(size) is int else size[0]
            self.h = size if type(size) is int else size[1]
        else:
            raise OperatorParamError("invalid params for ReisizeImage for '\
                'both 'size' and 'resize_short' are None")

G
gaotingquan 已提交
152
        self._resize_func = UnifiedResize(
H
HydrogenSulfate 已提交
153 154 155
            interpolation=interpolation,
            backend=backend,
            return_numpy=return_numpy)
G
gaotingquan 已提交
156

F
Felix 已提交
157
    def __call__(self, img):
H
HydrogenSulfate 已提交
158 159 160 161 162
        if isinstance(img, np.ndarray):
            img_h, img_w = img.shape[:2]
        else:
            img_w, img_h = img.size

F
Felix 已提交
163 164 165 166 167 168 169
        if self.resize_short is not None:
            percent = float(self.resize_short) / min(img_w, img_h)
            w = int(round(img_w * percent))
            h = int(round(img_h * percent))
        else:
            w = self.w
            h = self.h
G
gaotingquan 已提交
170
        return self._resize_func(img, (w, h))
F
Felix 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195


class CropImage(object):
    """ crop image """

    def __init__(self, size):
        if type(size) is int:
            self.size = (size, size)
        else:
            self.size = size  # (h, w)

    def __call__(self, img):
        w, h = self.size
        img_h, img_w = img.shape[:2]
        w_start = (img_w - w) // 2
        h_start = (img_h - h) // 2

        w_end = w_start + w
        h_end = h_start + h
        return img[h_start:h_end, w_start:w_end, :]


class RandCropImage(object):
    """ random crop image """

G
gaotingquan 已提交
196 197 198 199 200 201
    def __init__(self,
                 size,
                 scale=None,
                 ratio=None,
                 interpolation=None,
                 backend="cv2"):
F
Felix 已提交
202 203 204 205 206 207 208 209
        if type(size) is int:
            self.size = (size, size)  # (h, w)
        else:
            self.size = size

        self.scale = [0.08, 1.0] if scale is None else scale
        self.ratio = [3. / 4., 4. / 3.] if ratio is None else ratio

G
gaotingquan 已提交
210 211 212
        self._resize_func = UnifiedResize(
            interpolation=interpolation, backend=backend)

F
Felix 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    def __call__(self, img):
        size = self.size
        scale = self.scale
        ratio = self.ratio

        aspect_ratio = math.sqrt(random.uniform(*ratio))
        w = 1. * aspect_ratio
        h = 1. / aspect_ratio

        img_h, img_w = img.shape[:2]

        bound = min((float(img_w) / img_h) / (w**2),
                    (float(img_h) / img_w) / (h**2))
        scale_max = min(scale[1], bound)
        scale_min = min(scale[0], bound)

        target_area = img_w * img_h * random.uniform(scale_min, scale_max)
        target_size = math.sqrt(target_area)
        w = int(target_size * w)
        h = int(target_size * h)

        i = random.randint(0, img_w - w)
        j = random.randint(0, img_h - h)

        img = img[j:j + h, i:i + w, :]
G
gaotingquan 已提交
238 239

        return self._resize_func(img, size)
F
Felix 已提交
240 241


H
HydrogenSulfate 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
class RandCropImageV2(object):
    """ RandCropImageV2 is different from RandCropImage,
    it will Select a cutting position randomly in a uniform distribution way,
    and cut according to the given size without resize at last."""

    def __init__(self, size):
        if type(size) is int:
            self.size = (size, size)  # (h, w)
        else:
            self.size = size

    def __call__(self, img):
        if isinstance(img, np.ndarray):
            img_h, img_w = img.shap[0], img.shap[1]
        else:
            img_w, img_h = img.size
        tw, th = self.size

        if img_h + 1 < th or img_w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".
                format((th, tw), (img_h, img_w)))

        if img_w == tw and img_h == th:
            return img

        top = random.randint(0, img_h - th + 1)
        left = random.randint(0, img_w - tw + 1)
        if isinstance(img, np.ndarray):
            return img[top:top + th, left:left + tw, :]
        else:
            return img.crop((left, top, left + tw, top + th))


F
Felix 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
class RandFlipImage(object):
    """ random flip image
        flip_code:
            1: Flipped Horizontally
            0: Flipped Vertically
            -1: Flipped Horizontally & Vertically
    """

    def __init__(self, flip_code=1):
        assert flip_code in [-1, 0, 1
                             ], "flip_code should be a value in [-1, 0, 1]"
        self.flip_code = flip_code

    def __call__(self, img):
        if random.randint(0, 1) == 1:
H
HydrogenSulfate 已提交
291 292 293 294
            if isinstance(img, np.ndarray):
                return cv2.flip(img, self.flip_code)
            else:
                return img.transpose(Image.FLIP_LEFT_RIGHT)
F
Felix 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        else:
            return img


class AutoAugment(object):
    def __init__(self):
        self.policy = ImageNetPolicy()

    def __call__(self, img):
        from PIL import Image
        img = np.ascontiguousarray(img)
        img = Image.fromarray(img)
        img = self.policy(img)
        img = np.asarray(img)


class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
315 316 317 318 319 320 321
    def __init__(self,
                 scale=None,
                 mean=None,
                 std=None,
                 order='chw',
                 output_fp16=False,
                 channel_num=3):
F
Felix 已提交
322 323
        if isinstance(scale, str):
            scale = eval(scale)
littletomatodonkey's avatar
littletomatodonkey 已提交
324 325 326 327 328
        assert channel_num in [
            3, 4
        ], "channel number of input image should be set to 3 or 4."
        self.channel_num = channel_num
        self.output_dtype = 'float16' if output_fp16 else 'float32'
F
Felix 已提交
329
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
littletomatodonkey's avatar
littletomatodonkey 已提交
330
        self.order = order
F
Felix 已提交
331 332 333
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

littletomatodonkey's avatar
littletomatodonkey 已提交
334
        shape = (3, 1, 1) if self.order == 'chw' else (1, 1, 3)
F
Felix 已提交
335 336 337 338 339 340 341 342 343 344
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
littletomatodonkey's avatar
littletomatodonkey 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358

        img = (img.astype('float32') * self.scale - self.mean) / self.std

        if self.channel_num == 4:
            img_h = img.shape[1] if self.order == 'chw' else img.shape[0]
            img_w = img.shape[2] if self.order == 'chw' else img.shape[1]
            pad_zeros = np.zeros(
                (1, img_h, img_w)) if self.order == 'chw' else np.zeros(
                    (img_h, img_w, 1))
            img = (np.concatenate(
                (img, pad_zeros), axis=0)
                   if self.order == 'chw' else np.concatenate(
                       (img, pad_zeros), axis=2))
        return img.astype(self.output_dtype)
F
Felix 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self):
        pass

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        return img.transpose((2, 0, 1))


class AugMix(object):
    """ Perform AugMix augmentation and compute mixture.
    """

D
dongshuilong 已提交
380 381 382 383 384 385
    def __init__(self,
                 prob=0.5,
                 aug_prob_coeff=0.1,
                 mixture_width=3,
                 mixture_depth=1,
                 aug_severity=1):
F
Felix 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        """
        Args:
            prob: Probability of taking augmix
            aug_prob_coeff: Probability distribution coefficients.
            mixture_width: Number of augmentation chains to mix per augmented example.
            mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]'
            aug_severity: Severity of underlying augmentation operators (between 1 to 10).
        """
        # fmt: off
        self.prob = prob
        self.aug_prob_coeff = aug_prob_coeff
        self.mixture_width = mixture_width
        self.mixture_depth = mixture_depth
        self.aug_severity = aug_severity
        self.augmentations = augmentations
        # fmt: on

    def __call__(self, image):
        """Perform AugMix augmentations and compute mixture.
        Returns:
          mixed: Augmented and mixed image.
        """
        if random.random() > self.prob:
            # Avoid the warning: the given NumPy array is not writeable
            return np.asarray(image).copy()

        ws = np.float32(
            np.random.dirichlet([self.aug_prob_coeff] * self.mixture_width))
D
dongshuilong 已提交
414 415
        m = np.float32(
            np.random.beta(self.aug_prob_coeff, self.aug_prob_coeff))
F
Felix 已提交
416 417

        # image = Image.fromarray(image)
D
dongshuilong 已提交
418
        mix = np.zeros(image.shape)
F
Felix 已提交
419 420 421
        for i in range(self.mixture_width):
            image_aug = image.copy()
            image_aug = Image.fromarray(image_aug)
D
dongshuilong 已提交
422 423
            depth = self.mixture_depth if self.mixture_depth > 0 else np.random.randint(
                1, 4)
F
Felix 已提交
424 425 426 427 428 429 430
            for _ in range(depth):
                op = np.random.choice(self.augmentations)
                image_aug = op(image_aug, self.aug_severity)
            mix += ws[i] * np.asarray(image_aug)

        mixed = (1 - m) * image + m * mix
        return mixed.astype(np.uint8)
G
gaotingquan 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447


class ColorJitter(RawColorJitter):
    """ColorJitter.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def __call__(self, img):
        if not isinstance(img, Image.Image):
            img = np.ascontiguousarray(img)
            img = Image.fromarray(img)
        img = super()._apply_image(img)
        if isinstance(img, Image.Image):
            img = np.asarray(img)
        return img
H
HydrogenSulfate 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502


class Pad(object):
    """
    Pads the given PIL.Image on all sides with specified padding mode and fill value.
    adapted from: https://pytorch.org/vision/stable/_modules/torchvision/transforms/transforms.html#Pad
    """

    def __init__(self, padding: int, fill: int=0,
                 padding_mode: str="constant"):
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

    def _parse_fill(self, fill, img, min_pil_version, name="fillcolor"):
        # Process fill color for affine transforms
        major_found, minor_found = (int(v)
                                    for v in PILLOW_VERSION.split('.')[:2])
        major_required, minor_required = (
            int(v) for v in min_pil_version.split('.')[:2])
        if major_found < major_required or (major_found == major_required and
                                            minor_found < minor_required):
            if fill is None:
                return {}
            else:
                msg = (
                    "The option to fill background area of the transformed image, "
                    "requires pillow>={}")
                raise RuntimeError(msg.format(min_pil_version))

        num_bands = len(img.getbands())
        if fill is None:
            fill = 0
        if isinstance(fill, (int, float)) and num_bands > 1:
            fill = tuple([fill] * num_bands)
        if isinstance(fill, (list, tuple)):
            if len(fill) != num_bands:
                msg = (
                    "The number of elements in 'fill' does not match the number of "
                    "bands of the image ({} != {})")
                raise ValueError(msg.format(len(fill), num_bands))

            fill = tuple(fill)

        return {name: fill}

    def __call__(self, img):
        opts = self._parse_fill(self.fill, img, "2.3.0", name="fill")
        if img.mode == "P":
            palette = img.getpalette()
            img = ImageOps.expand(img, border=self.padding, **opts)
            img.putpalette(palette)
            return img

        return ImageOps.expand(img, border=self.padding, **opts)