Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
1d9c5710
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1d9c5710
编写于
5月 31, 2021
作者:
F
Felix
提交者:
GitHub
5月 31, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add files via upload
上级
3bd7a097
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
1225 addition
and
0 deletion
+1225
-0
ppcls/data/preprocess/ops/autoaugment.py
ppcls/data/preprocess/ops/autoaugment.py
+264
-0
ppcls/data/preprocess/ops/cutout.py
ppcls/data/preprocess/ops/cutout.py
+41
-0
ppcls/data/preprocess/ops/fmix.py
ppcls/data/preprocess/ops/fmix.py
+217
-0
ppcls/data/preprocess/ops/functional.py
ppcls/data/preprocess/ops/functional.py
+124
-0
ppcls/data/preprocess/ops/grid.py
ppcls/data/preprocess/ops/grid.py
+89
-0
ppcls/data/preprocess/ops/hide_and_seek.py
ppcls/data/preprocess/ops/hide_and_seek.py
+44
-0
ppcls/data/preprocess/ops/operators.py
ppcls/data/preprocess/ops/operators.py
+281
-0
ppcls/data/preprocess/ops/randaugment.py
ppcls/data/preprocess/ops/randaugment.py
+106
-0
ppcls/data/preprocess/ops/random_erasing.py
ppcls/data/preprocess/ops/random_erasing.py
+59
-0
未找到文件。
ppcls/data/preprocess/ops/autoaugment.py
0 → 100644
浏览文件 @
1d9c5710
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code is based on https://github.com/DeepVoltaire/AutoAugment/blob/master/autoaugment.py
from
PIL
import
Image
,
ImageEnhance
,
ImageOps
import
numpy
as
np
import
random
class
ImageNetPolicy
(
object
):
""" Randomly choose one of the best 24 Sub-policies on ImageNet.
Example:
>>> policy = ImageNetPolicy()
>>> transformed = policy(image)
Example as a PyTorch Transform:
>>> transform=transforms.Compose([
>>> transforms.Resize(256),
>>> ImageNetPolicy(),
>>> transforms.ToTensor()])
"""
def
__init__
(
self
,
fillcolor
=
(
128
,
128
,
128
)):
self
.
policies
=
[
SubPolicy
(
0.4
,
"posterize"
,
8
,
0.6
,
"rotate"
,
9
,
fillcolor
),
SubPolicy
(
0.6
,
"solarize"
,
5
,
0.6
,
"autocontrast"
,
5
,
fillcolor
),
SubPolicy
(
0.8
,
"equalize"
,
8
,
0.6
,
"equalize"
,
3
,
fillcolor
),
SubPolicy
(
0.6
,
"posterize"
,
7
,
0.6
,
"posterize"
,
6
,
fillcolor
),
SubPolicy
(
0.4
,
"equalize"
,
7
,
0.2
,
"solarize"
,
4
,
fillcolor
),
SubPolicy
(
0.4
,
"equalize"
,
4
,
0.8
,
"rotate"
,
8
,
fillcolor
),
SubPolicy
(
0.6
,
"solarize"
,
3
,
0.6
,
"equalize"
,
7
,
fillcolor
),
SubPolicy
(
0.8
,
"posterize"
,
5
,
1.0
,
"equalize"
,
2
,
fillcolor
),
SubPolicy
(
0.2
,
"rotate"
,
3
,
0.6
,
"solarize"
,
8
,
fillcolor
),
SubPolicy
(
0.6
,
"equalize"
,
8
,
0.4
,
"posterize"
,
6
,
fillcolor
),
SubPolicy
(
0.8
,
"rotate"
,
8
,
0.4
,
"color"
,
0
,
fillcolor
),
SubPolicy
(
0.4
,
"rotate"
,
9
,
0.6
,
"equalize"
,
2
,
fillcolor
),
SubPolicy
(
0.0
,
"equalize"
,
7
,
0.8
,
"equalize"
,
8
,
fillcolor
),
SubPolicy
(
0.6
,
"invert"
,
4
,
1.0
,
"equalize"
,
8
,
fillcolor
),
SubPolicy
(
0.6
,
"color"
,
4
,
1.0
,
"contrast"
,
8
,
fillcolor
),
SubPolicy
(
0.8
,
"rotate"
,
8
,
1.0
,
"color"
,
2
,
fillcolor
),
SubPolicy
(
0.8
,
"color"
,
8
,
0.8
,
"solarize"
,
7
,
fillcolor
),
SubPolicy
(
0.4
,
"sharpness"
,
7
,
0.6
,
"invert"
,
8
,
fillcolor
),
SubPolicy
(
0.6
,
"shearX"
,
5
,
1.0
,
"equalize"
,
9
,
fillcolor
),
SubPolicy
(
0.4
,
"color"
,
0
,
0.6
,
"equalize"
,
3
,
fillcolor
),
SubPolicy
(
0.4
,
"equalize"
,
7
,
0.2
,
"solarize"
,
4
,
fillcolor
),
SubPolicy
(
0.6
,
"solarize"
,
5
,
0.6
,
"autocontrast"
,
5
,
fillcolor
),
SubPolicy
(
0.6
,
"invert"
,
4
,
1.0
,
"equalize"
,
8
,
fillcolor
),
SubPolicy
(
0.6
,
"color"
,
4
,
1.0
,
"contrast"
,
8
,
fillcolor
),
SubPolicy
(
0.8
,
"equalize"
,
8
,
0.6
,
"equalize"
,
3
,
fillcolor
)
]
def
__call__
(
self
,
img
,
policy_idx
=
None
):
if
policy_idx
is
None
or
not
isinstance
(
policy_idx
,
int
):
policy_idx
=
random
.
randint
(
0
,
len
(
self
.
policies
)
-
1
)
else
:
policy_idx
=
policy_idx
%
len
(
self
.
policies
)
return
self
.
policies
[
policy_idx
](
img
)
def
__repr__
(
self
):
return
"AutoAugment ImageNet Policy"
class
CIFAR10Policy
(
object
):
""" Randomly choose one of the best 25 Sub-policies on CIFAR10.
Example:
>>> policy = CIFAR10Policy()
>>> transformed = policy(image)
Example as a PyTorch Transform:
>>> transform=transforms.Compose([
>>> transforms.Resize(256),
>>> CIFAR10Policy(),
>>> transforms.ToTensor()])
"""
def
__init__
(
self
,
fillcolor
=
(
128
,
128
,
128
)):
self
.
policies
=
[
SubPolicy
(
0.1
,
"invert"
,
7
,
0.2
,
"contrast"
,
6
,
fillcolor
),
SubPolicy
(
0.7
,
"rotate"
,
2
,
0.3
,
"translateX"
,
9
,
fillcolor
),
SubPolicy
(
0.8
,
"sharpness"
,
1
,
0.9
,
"sharpness"
,
3
,
fillcolor
),
SubPolicy
(
0.5
,
"shearY"
,
8
,
0.7
,
"translateY"
,
9
,
fillcolor
),
SubPolicy
(
0.5
,
"autocontrast"
,
8
,
0.9
,
"equalize"
,
2
,
fillcolor
),
SubPolicy
(
0.2
,
"shearY"
,
7
,
0.3
,
"posterize"
,
7
,
fillcolor
),
SubPolicy
(
0.4
,
"color"
,
3
,
0.6
,
"brightness"
,
7
,
fillcolor
),
SubPolicy
(
0.3
,
"sharpness"
,
9
,
0.7
,
"brightness"
,
9
,
fillcolor
),
SubPolicy
(
0.6
,
"equalize"
,
5
,
0.5
,
"equalize"
,
1
,
fillcolor
),
SubPolicy
(
0.6
,
"contrast"
,
7
,
0.6
,
"sharpness"
,
5
,
fillcolor
),
SubPolicy
(
0.7
,
"color"
,
7
,
0.5
,
"translateX"
,
8
,
fillcolor
),
SubPolicy
(
0.3
,
"equalize"
,
7
,
0.4
,
"autocontrast"
,
8
,
fillcolor
),
SubPolicy
(
0.4
,
"translateY"
,
3
,
0.2
,
"sharpness"
,
6
,
fillcolor
),
SubPolicy
(
0.9
,
"brightness"
,
6
,
0.2
,
"color"
,
8
,
fillcolor
),
SubPolicy
(
0.5
,
"solarize"
,
2
,
0.0
,
"invert"
,
3
,
fillcolor
),
SubPolicy
(
0.2
,
"equalize"
,
0
,
0.6
,
"autocontrast"
,
0
,
fillcolor
),
SubPolicy
(
0.2
,
"equalize"
,
8
,
0.8
,
"equalize"
,
4
,
fillcolor
),
SubPolicy
(
0.9
,
"color"
,
9
,
0.6
,
"equalize"
,
6
,
fillcolor
),
SubPolicy
(
0.8
,
"autocontrast"
,
4
,
0.2
,
"solarize"
,
8
,
fillcolor
),
SubPolicy
(
0.1
,
"brightness"
,
3
,
0.7
,
"color"
,
0
,
fillcolor
),
SubPolicy
(
0.4
,
"solarize"
,
5
,
0.9
,
"autocontrast"
,
3
,
fillcolor
),
SubPolicy
(
0.9
,
"translateY"
,
9
,
0.7
,
"translateY"
,
9
,
fillcolor
),
SubPolicy
(
0.9
,
"autocontrast"
,
2
,
0.8
,
"solarize"
,
3
,
fillcolor
),
SubPolicy
(
0.8
,
"equalize"
,
8
,
0.1
,
"invert"
,
3
,
fillcolor
),
SubPolicy
(
0.7
,
"translateY"
,
9
,
0.9
,
"autocontrast"
,
1
,
fillcolor
)
]
def
__call__
(
self
,
img
,
policy_idx
=
None
):
if
policy_idx
is
None
or
not
isinstance
(
policy_idx
,
int
):
policy_idx
=
random
.
randint
(
0
,
len
(
self
.
policies
)
-
1
)
else
:
policy_idx
=
policy_idx
%
len
(
self
.
policies
)
return
self
.
policies
[
policy_idx
](
img
)
def
__repr__
(
self
):
return
"AutoAugment CIFAR10 Policy"
class
SVHNPolicy
(
object
):
""" Randomly choose one of the best 25 Sub-policies on SVHN.
Example:
>>> policy = SVHNPolicy()
>>> transformed = policy(image)
Example as a PyTorch Transform:
>>> transform=transforms.Compose([
>>> transforms.Resize(256),
>>> SVHNPolicy(),
>>> transforms.ToTensor()])
"""
def
__init__
(
self
,
fillcolor
=
(
128
,
128
,
128
)):
self
.
policies
=
[
SubPolicy
(
0.9
,
"shearX"
,
4
,
0.2
,
"invert"
,
3
,
fillcolor
),
SubPolicy
(
0.9
,
"shearY"
,
8
,
0.7
,
"invert"
,
5
,
fillcolor
),
SubPolicy
(
0.6
,
"equalize"
,
5
,
0.6
,
"solarize"
,
6
,
fillcolor
),
SubPolicy
(
0.9
,
"invert"
,
3
,
0.6
,
"equalize"
,
3
,
fillcolor
),
SubPolicy
(
0.6
,
"equalize"
,
1
,
0.9
,
"rotate"
,
3
,
fillcolor
),
SubPolicy
(
0.9
,
"shearX"
,
4
,
0.8
,
"autocontrast"
,
3
,
fillcolor
),
SubPolicy
(
0.9
,
"shearY"
,
8
,
0.4
,
"invert"
,
5
,
fillcolor
),
SubPolicy
(
0.9
,
"shearY"
,
5
,
0.2
,
"solarize"
,
6
,
fillcolor
),
SubPolicy
(
0.9
,
"invert"
,
6
,
0.8
,
"autocontrast"
,
1
,
fillcolor
),
SubPolicy
(
0.6
,
"equalize"
,
3
,
0.9
,
"rotate"
,
3
,
fillcolor
),
SubPolicy
(
0.9
,
"shearX"
,
4
,
0.3
,
"solarize"
,
3
,
fillcolor
),
SubPolicy
(
0.8
,
"shearY"
,
8
,
0.7
,
"invert"
,
4
,
fillcolor
),
SubPolicy
(
0.9
,
"equalize"
,
5
,
0.6
,
"translateY"
,
6
,
fillcolor
),
SubPolicy
(
0.9
,
"invert"
,
4
,
0.6
,
"equalize"
,
7
,
fillcolor
),
SubPolicy
(
0.3
,
"contrast"
,
3
,
0.8
,
"rotate"
,
4
,
fillcolor
),
SubPolicy
(
0.8
,
"invert"
,
5
,
0.0
,
"translateY"
,
2
,
fillcolor
),
SubPolicy
(
0.7
,
"shearY"
,
6
,
0.4
,
"solarize"
,
8
,
fillcolor
),
SubPolicy
(
0.6
,
"invert"
,
4
,
0.8
,
"rotate"
,
4
,
fillcolor
),
SubPolicy
(
0.3
,
"shearY"
,
7
,
0.9
,
"translateX"
,
3
,
fillcolor
),
SubPolicy
(
0.1
,
"shearX"
,
6
,
0.6
,
"invert"
,
5
,
fillcolor
),
SubPolicy
(
0.7
,
"solarize"
,
2
,
0.6
,
"translateY"
,
7
,
fillcolor
),
SubPolicy
(
0.8
,
"shearY"
,
4
,
0.8
,
"invert"
,
8
,
fillcolor
),
SubPolicy
(
0.7
,
"shearX"
,
9
,
0.8
,
"translateY"
,
3
,
fillcolor
),
SubPolicy
(
0.8
,
"shearY"
,
5
,
0.7
,
"autocontrast"
,
3
,
fillcolor
),
SubPolicy
(
0.7
,
"shearX"
,
2
,
0.1
,
"invert"
,
5
,
fillcolor
)
]
def
__call__
(
self
,
img
,
policy_idx
=
None
):
if
policy_idx
is
None
or
not
isinstance
(
policy_idx
,
int
):
policy_idx
=
random
.
randint
(
0
,
len
(
self
.
policies
)
-
1
)
else
:
policy_idx
=
policy_idx
%
len
(
self
.
policies
)
return
self
.
policies
[
policy_idx
](
img
)
def
__repr__
(
self
):
return
"AutoAugment SVHN Policy"
class
SubPolicy
(
object
):
def
__init__
(
self
,
p1
,
operation1
,
magnitude_idx1
,
p2
,
operation2
,
magnitude_idx2
,
fillcolor
=
(
128
,
128
,
128
)):
ranges
=
{
"shearX"
:
np
.
linspace
(
0
,
0.3
,
10
),
"shearY"
:
np
.
linspace
(
0
,
0.3
,
10
),
"translateX"
:
np
.
linspace
(
0
,
150
/
331
,
10
),
"translateY"
:
np
.
linspace
(
0
,
150
/
331
,
10
),
"rotate"
:
np
.
linspace
(
0
,
30
,
10
),
"color"
:
np
.
linspace
(
0.0
,
0.9
,
10
),
"posterize"
:
np
.
round
(
np
.
linspace
(
8
,
4
,
10
),
0
).
astype
(
np
.
int
),
"solarize"
:
np
.
linspace
(
256
,
0
,
10
),
"contrast"
:
np
.
linspace
(
0.0
,
0.9
,
10
),
"sharpness"
:
np
.
linspace
(
0.0
,
0.9
,
10
),
"brightness"
:
np
.
linspace
(
0.0
,
0.9
,
10
),
"autocontrast"
:
[
0
]
*
10
,
"equalize"
:
[
0
]
*
10
,
"invert"
:
[
0
]
*
10
}
# from https://stackoverflow.com/questions/5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
def
rotate_with_fill
(
img
,
magnitude
):
rot
=
img
.
convert
(
"RGBA"
).
rotate
(
magnitude
)
return
Image
.
composite
(
rot
,
Image
.
new
(
"RGBA"
,
rot
.
size
,
(
128
,
)
*
4
),
rot
).
convert
(
img
.
mode
)
func
=
{
"shearX"
:
lambda
img
,
magnitude
:
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
1
,
magnitude
*
random
.
choice
([
-
1
,
1
]),
0
,
0
,
1
,
0
),
Image
.
BICUBIC
,
fillcolor
=
fillcolor
),
"shearY"
:
lambda
img
,
magnitude
:
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
0
,
magnitude
*
random
.
choice
([
-
1
,
1
]),
1
,
0
),
Image
.
BICUBIC
,
fillcolor
=
fillcolor
),
"translateX"
:
lambda
img
,
magnitude
:
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
magnitude
*
img
.
size
[
0
]
*
random
.
choice
([
-
1
,
1
]),
0
,
1
,
0
),
fillcolor
=
fillcolor
),
"translateY"
:
lambda
img
,
magnitude
:
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
0
,
0
,
1
,
magnitude
*
img
.
size
[
1
]
*
random
.
choice
([
-
1
,
1
])),
fillcolor
=
fillcolor
),
"rotate"
:
lambda
img
,
magnitude
:
rotate_with_fill
(
img
,
magnitude
),
# "rotate": lambda img, magnitude: img.rotate(magnitude * random.choice([-1, 1])),
"color"
:
lambda
img
,
magnitude
:
ImageEnhance
.
Color
(
img
).
enhance
(
1
+
magnitude
*
random
.
choice
([
-
1
,
1
])),
"posterize"
:
lambda
img
,
magnitude
:
ImageOps
.
posterize
(
img
,
magnitude
),
"solarize"
:
lambda
img
,
magnitude
:
ImageOps
.
solarize
(
img
,
magnitude
),
"contrast"
:
lambda
img
,
magnitude
:
ImageEnhance
.
Contrast
(
img
).
enhance
(
1
+
magnitude
*
random
.
choice
([
-
1
,
1
])),
"sharpness"
:
lambda
img
,
magnitude
:
ImageEnhance
.
Sharpness
(
img
).
enhance
(
1
+
magnitude
*
random
.
choice
([
-
1
,
1
])),
"brightness"
:
lambda
img
,
magnitude
:
ImageEnhance
.
Brightness
(
img
).
enhance
(
1
+
magnitude
*
random
.
choice
([
-
1
,
1
])),
"autocontrast"
:
lambda
img
,
magnitude
:
ImageOps
.
autocontrast
(
img
),
"equalize"
:
lambda
img
,
magnitude
:
ImageOps
.
equalize
(
img
),
"invert"
:
lambda
img
,
magnitude
:
ImageOps
.
invert
(
img
)
}
self
.
p1
=
p1
self
.
operation1
=
func
[
operation1
]
self
.
magnitude1
=
ranges
[
operation1
][
magnitude_idx1
]
self
.
p2
=
p2
self
.
operation2
=
func
[
operation2
]
self
.
magnitude2
=
ranges
[
operation2
][
magnitude_idx2
]
def
__call__
(
self
,
img
):
if
random
.
random
()
<
self
.
p1
:
img
=
self
.
operation1
(
img
,
self
.
magnitude1
)
if
random
.
random
()
<
self
.
p2
:
img
=
self
.
operation2
(
img
,
self
.
magnitude2
)
return
img
ppcls/data/preprocess/ops/cutout.py
0 → 100644
浏览文件 @
1d9c5710
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code is based on https://github.com/uoguelph-mlrg/Cutout
import
numpy
as
np
import
random
class
Cutout
(
object
):
def
__init__
(
self
,
n_holes
=
1
,
length
=
112
):
self
.
n_holes
=
n_holes
self
.
length
=
length
def
__call__
(
self
,
img
):
""" cutout_image """
h
,
w
=
img
.
shape
[:
2
]
mask
=
np
.
ones
((
h
,
w
),
np
.
float32
)
for
n
in
range
(
self
.
n_holes
):
y
=
np
.
random
.
randint
(
h
)
x
=
np
.
random
.
randint
(
w
)
y1
=
np
.
clip
(
y
-
self
.
length
//
2
,
0
,
h
)
y2
=
np
.
clip
(
y
+
self
.
length
//
2
,
0
,
h
)
x1
=
np
.
clip
(
x
-
self
.
length
//
2
,
0
,
w
)
x2
=
np
.
clip
(
x
+
self
.
length
//
2
,
0
,
w
)
img
[
y1
:
y2
,
x1
:
x2
]
=
0
return
img
ppcls/data/preprocess/ops/fmix.py
0 → 100644
浏览文件 @
1d9c5710
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
random
import
numpy
as
np
from
scipy.stats
import
beta
def
fftfreqnd
(
h
,
w
=
None
,
z
=
None
):
""" Get bin values for discrete fourier transform of size (h, w, z)
:param h: Required, first dimension size
:param w: Optional, second dimension size
:param z: Optional, third dimension size
"""
fz
=
fx
=
0
fy
=
np
.
fft
.
fftfreq
(
h
)
if
w
is
not
None
:
fy
=
np
.
expand_dims
(
fy
,
-
1
)
if
w
%
2
==
1
:
fx
=
np
.
fft
.
fftfreq
(
w
)[:
w
//
2
+
2
]
else
:
fx
=
np
.
fft
.
fftfreq
(
w
)[:
w
//
2
+
1
]
if
z
is
not
None
:
fy
=
np
.
expand_dims
(
fy
,
-
1
)
if
z
%
2
==
1
:
fz
=
np
.
fft
.
fftfreq
(
z
)[:,
None
]
else
:
fz
=
np
.
fft
.
fftfreq
(
z
)[:,
None
]
return
np
.
sqrt
(
fx
*
fx
+
fy
*
fy
+
fz
*
fz
)
def
get_spectrum
(
freqs
,
decay_power
,
ch
,
h
,
w
=
0
,
z
=
0
):
""" Samples a fourier image with given size and frequencies decayed by decay power
:param freqs: Bin values for the discrete fourier transform
:param decay_power: Decay power for frequency decay prop 1/f**d
:param ch: Number of channels for the resulting mask
:param h: Required, first dimension size
:param w: Optional, second dimension size
:param z: Optional, third dimension size
"""
scale
=
np
.
ones
(
1
)
/
(
np
.
maximum
(
freqs
,
np
.
array
([
1.
/
max
(
w
,
h
,
z
)]))
**
decay_power
)
param_size
=
[
ch
]
+
list
(
freqs
.
shape
)
+
[
2
]
param
=
np
.
random
.
randn
(
*
param_size
)
scale
=
np
.
expand_dims
(
scale
,
-
1
)[
None
,
:]
return
scale
*
param
def
make_low_freq_image
(
decay
,
shape
,
ch
=
1
):
""" Sample a low frequency image from fourier space
:param decay_power: Decay power for frequency decay prop 1/f**d
:param shape: Shape of desired mask, list up to 3 dims
:param ch: Number of channels for desired mask
"""
freqs
=
fftfreqnd
(
*
shape
)
spectrum
=
get_spectrum
(
freqs
,
decay
,
ch
,
*
shape
)
#.reshape((1, *shape[:-1], -1))
spectrum
=
spectrum
[:,
0
]
+
1j
*
spectrum
[:,
1
]
mask
=
np
.
real
(
np
.
fft
.
irfftn
(
spectrum
,
shape
))
if
len
(
shape
)
==
1
:
mask
=
mask
[:
1
,
:
shape
[
0
]]
if
len
(
shape
)
==
2
:
mask
=
mask
[:
1
,
:
shape
[
0
],
:
shape
[
1
]]
if
len
(
shape
)
==
3
:
mask
=
mask
[:
1
,
:
shape
[
0
],
:
shape
[
1
],
:
shape
[
2
]]
mask
=
mask
mask
=
(
mask
-
mask
.
min
())
mask
=
mask
/
mask
.
max
()
return
mask
def
sample_lam
(
alpha
,
reformulate
=
False
):
""" Sample a lambda from symmetric beta distribution with given alpha
:param alpha: Alpha value for beta distribution
:param reformulate: If True, uses the reformulation of [1].
"""
if
reformulate
:
lam
=
beta
.
rvs
(
alpha
+
1
,
alpha
)
else
:
lam
=
beta
.
rvs
(
alpha
,
alpha
)
return
lam
def
binarise_mask
(
mask
,
lam
,
in_shape
,
max_soft
=
0.0
):
""" Binarises a given low frequency image such that it has mean lambda.
:param mask: Low frequency image, usually the result of `make_low_freq_image`
:param lam: Mean value of final mask
:param in_shape: Shape of inputs
:param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
:return:
"""
idx
=
mask
.
reshape
(
-
1
).
argsort
()[::
-
1
]
mask
=
mask
.
reshape
(
-
1
)
num
=
math
.
ceil
(
lam
*
mask
.
size
)
if
random
.
random
()
>
0.5
else
math
.
floor
(
lam
*
mask
.
size
)
eff_soft
=
max_soft
if
max_soft
>
lam
or
max_soft
>
(
1
-
lam
):
eff_soft
=
min
(
lam
,
1
-
lam
)
soft
=
int
(
mask
.
size
*
eff_soft
)
num_low
=
int
(
num
-
soft
)
num_high
=
int
(
num
+
soft
)
mask
[
idx
[:
num_high
]]
=
1
mask
[
idx
[
num_low
:]]
=
0
mask
[
idx
[
num_low
:
num_high
]]
=
np
.
linspace
(
1
,
0
,
(
num_high
-
num_low
))
mask
=
mask
.
reshape
((
1
,
1
,
in_shape
[
0
],
in_shape
[
1
]))
return
mask
def
sample_mask
(
alpha
,
decay_power
,
shape
,
max_soft
=
0.0
,
reformulate
=
False
):
""" Samples a mean lambda from beta distribution parametrised by alpha, creates a low frequency image and binarises
it based on this lambda
:param alpha: Alpha value for beta distribution from which to sample mean of mask
:param decay_power: Decay power for frequency decay prop 1/f**d
:param shape: Shape of desired mask, list up to 3 dims
:param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
:param reformulate: If True, uses the reformulation of [1].
"""
if
isinstance
(
shape
,
int
):
shape
=
(
shape
,
)
# Choose lambda
lam
=
sample_lam
(
alpha
,
reformulate
)
# Make mask, get mean / std
mask
=
make_low_freq_image
(
decay_power
,
shape
)
mask
=
binarise_mask
(
mask
,
lam
,
shape
,
max_soft
)
return
float
(
lam
),
mask
def
sample_and_apply
(
x
,
alpha
,
decay_power
,
shape
,
max_soft
=
0.0
,
reformulate
=
False
):
"""
:param x: Image batch on which to apply fmix of shape [b, c, shape*]
:param alpha: Alpha value for beta distribution from which to sample mean of mask
:param decay_power: Decay power for frequency decay prop 1/f**d
:param shape: Shape of desired mask, list up to 3 dims
:param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
:param reformulate: If True, uses the reformulation of [1].
:return: mixed input, permutation indices, lambda value of mix,
"""
lam
,
mask
=
sample_mask
(
alpha
,
decay_power
,
shape
,
max_soft
,
reformulate
)
index
=
np
.
random
.
permutation
(
x
.
shape
[
0
])
x1
,
x2
=
x
*
mask
,
x
[
index
]
*
(
1
-
mask
)
return
x1
+
x2
,
index
,
lam
class
FMixBase
:
""" FMix augmentation
Args:
decay_power (float): Decay power for frequency decay prop 1/f**d
alpha (float): Alpha value for beta distribution from which to sample mean of mask
size ([int] | [int, int] | [int, int, int]): Shape of desired mask, list up to 3 dims
max_soft (float): Softening value between 0 and 0.5 which smooths hard edges in the mask.
reformulate (bool): If True, uses the reformulation of [1].
"""
def
__init__
(
self
,
decay_power
=
3
,
alpha
=
1
,
size
=
(
32
,
32
),
max_soft
=
0.0
,
reformulate
=
False
):
super
().
__init__
()
self
.
decay_power
=
decay_power
self
.
reformulate
=
reformulate
self
.
size
=
size
self
.
alpha
=
alpha
self
.
max_soft
=
max_soft
self
.
index
=
None
self
.
lam
=
None
def
__call__
(
self
,
x
):
raise
NotImplementedError
def
loss
(
self
,
*
args
,
**
kwargs
):
raise
NotImplementedError
ppcls/data/preprocess/ops/functional.py
0 → 100644
浏览文件 @
1d9c5710
# encoding: utf-8
import
numpy
as
np
from
PIL
import
Image
,
ImageOps
,
ImageEnhance
def
int_parameter
(
level
,
maxval
):
"""Helper function to scale `val` between 0 and maxval .
Args:
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be scaled to
level/PARAMETER_MAX.
Returns:
An int that results from scaling `maxval` according to `level`.
"""
return
int
(
level
*
maxval
/
10
)
def
float_parameter
(
level
,
maxval
):
"""Helper function to scale `val` between 0 and maxval.
Args:
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be scaled to
level/PARAMETER_MAX.
Returns:
A float that results from scaling `maxval` according to `level`.
"""
return
float
(
level
)
*
maxval
/
10.
def
sample_level
(
n
):
return
np
.
random
.
uniform
(
low
=
0.1
,
high
=
n
)
def
autocontrast
(
pil_img
,
*
args
):
return
ImageOps
.
autocontrast
(
pil_img
)
def
equalize
(
pil_img
,
*
args
):
return
ImageOps
.
equalize
(
pil_img
)
def
posterize
(
pil_img
,
level
,
*
args
):
level
=
int_parameter
(
sample_level
(
level
),
4
)
return
ImageOps
.
posterize
(
pil_img
,
4
-
level
)
def
rotate
(
pil_img
,
level
,
*
args
):
degrees
=
int_parameter
(
sample_level
(
level
),
30
)
if
np
.
random
.
uniform
()
>
0.5
:
degrees
=
-
degrees
return
pil_img
.
rotate
(
degrees
,
resample
=
Image
.
BILINEAR
)
def
solarize
(
pil_img
,
level
,
*
args
):
level
=
int_parameter
(
sample_level
(
level
),
256
)
return
ImageOps
.
solarize
(
pil_img
,
256
-
level
)
def
shear_x
(
pil_img
,
level
):
level
=
float_parameter
(
sample_level
(
level
),
0.3
)
if
np
.
random
.
uniform
()
>
0.5
:
level
=
-
level
return
pil_img
.
transform
(
pil_img
.
size
,
Image
.
AFFINE
,
(
1
,
level
,
0
,
0
,
1
,
0
),
resample
=
Image
.
BILINEAR
)
def
shear_y
(
pil_img
,
level
):
level
=
float_parameter
(
sample_level
(
level
),
0.3
)
if
np
.
random
.
uniform
()
>
0.5
:
level
=
-
level
return
pil_img
.
transform
(
pil_img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
0
,
level
,
1
,
0
),
resample
=
Image
.
BILINEAR
)
def
translate_x
(
pil_img
,
level
):
level
=
int_parameter
(
sample_level
(
level
),
pil_img
.
size
[
0
]
/
3
)
if
np
.
random
.
random
()
>
0.5
:
level
=
-
level
return
pil_img
.
transform
(
pil_img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
level
,
0
,
1
,
0
),
resample
=
Image
.
BILINEAR
)
def
translate_y
(
pil_img
,
level
):
level
=
int_parameter
(
sample_level
(
level
),
pil_img
.
size
[
1
]
/
3
)
if
np
.
random
.
random
()
>
0.5
:
level
=
-
level
return
pil_img
.
transform
(
pil_img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
0
,
0
,
1
,
level
),
resample
=
Image
.
BILINEAR
)
# operation that overlaps with ImageNet-C's test set
def
color
(
pil_img
,
level
,
*
args
):
level
=
float_parameter
(
sample_level
(
level
),
1.8
)
+
0.1
return
ImageEnhance
.
Color
(
pil_img
).
enhance
(
level
)
# operation that overlaps with ImageNet-C's test set
def
contrast
(
pil_img
,
level
,
*
args
):
level
=
float_parameter
(
sample_level
(
level
),
1.8
)
+
0.1
return
ImageEnhance
.
Contrast
(
pil_img
).
enhance
(
level
)
# operation that overlaps with ImageNet-C's test set
def
brightness
(
pil_img
,
level
,
*
args
):
level
=
float_parameter
(
sample_level
(
level
),
1.8
)
+
0.1
return
ImageEnhance
.
Brightness
(
pil_img
).
enhance
(
level
)
# operation that overlaps with ImageNet-C's test set
def
sharpness
(
pil_img
,
level
,
*
args
):
level
=
float_parameter
(
sample_level
(
level
),
1.8
)
+
0.1
return
ImageEnhance
.
Sharpness
(
pil_img
).
enhance
(
level
)
augmentations
=
[
autocontrast
,
equalize
,
posterize
,
rotate
,
solarize
,
shear_x
,
shear_y
,
translate_x
,
translate_y
]
\ No newline at end of file
ppcls/data/preprocess/ops/grid.py
0 → 100644
浏览文件 @
1d9c5710
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code is based on https://github.com/akuxcw/GridMask
import
numpy
as
np
from
PIL
import
Image
import
pdb
# curr
CURR_EPOCH
=
0
# epoch for the prob to be the upper limit
NUM_EPOCHS
=
240
class
GridMask
(
object
):
def
__init__
(
self
,
d1
=
96
,
d2
=
224
,
rotate
=
1
,
ratio
=
0.5
,
mode
=
0
,
prob
=
1.
):
self
.
d1
=
d1
self
.
d2
=
d2
self
.
rotate
=
rotate
self
.
ratio
=
ratio
self
.
mode
=
mode
self
.
st_prob
=
prob
self
.
prob
=
prob
self
.
last_prob
=
-
1
def
set_prob
(
self
):
global
CURR_EPOCH
global
NUM_EPOCHS
self
.
prob
=
self
.
st_prob
*
min
(
1
,
1.0
*
CURR_EPOCH
/
NUM_EPOCHS
)
def
__call__
(
self
,
img
):
self
.
set_prob
()
if
abs
(
self
.
last_prob
-
self
.
prob
)
>
1e-10
:
global
CURR_EPOCH
global
NUM_EPOCHS
print
(
"self.prob is updated, self.prob={}, CURR_EPOCH: {}, NUM_EPOCHS: {}"
.
format
(
self
.
prob
,
CURR_EPOCH
,
NUM_EPOCHS
))
self
.
last_prob
=
self
.
prob
# print("CURR_EPOCH: {}, NUM_EPOCHS: {}, self.prob is set as: {}".format(CURR_EPOCH, NUM_EPOCHS, self.prob) )
if
np
.
random
.
rand
()
>
self
.
prob
:
return
img
_
,
h
,
w
=
img
.
shape
hh
=
int
(
1.5
*
h
)
ww
=
int
(
1.5
*
w
)
d
=
np
.
random
.
randint
(
self
.
d1
,
self
.
d2
)
#d = self.d
self
.
l
=
int
(
d
*
self
.
ratio
+
0.5
)
mask
=
np
.
ones
((
hh
,
ww
),
np
.
float32
)
st_h
=
np
.
random
.
randint
(
d
)
st_w
=
np
.
random
.
randint
(
d
)
for
i
in
range
(
-
1
,
hh
//
d
+
1
):
s
=
d
*
i
+
st_h
t
=
s
+
self
.
l
s
=
max
(
min
(
s
,
hh
),
0
)
t
=
max
(
min
(
t
,
hh
),
0
)
mask
[
s
:
t
,
:]
*=
0
for
i
in
range
(
-
1
,
ww
//
d
+
1
):
s
=
d
*
i
+
st_w
t
=
s
+
self
.
l
s
=
max
(
min
(
s
,
ww
),
0
)
t
=
max
(
min
(
t
,
ww
),
0
)
mask
[:,
s
:
t
]
*=
0
r
=
np
.
random
.
randint
(
self
.
rotate
)
mask
=
Image
.
fromarray
(
np
.
uint8
(
mask
))
mask
=
mask
.
rotate
(
r
)
mask
=
np
.
asarray
(
mask
)
mask
=
mask
[(
hh
-
h
)
//
2
:(
hh
-
h
)
//
2
+
h
,
(
ww
-
w
)
//
2
:(
ww
-
w
)
//
2
+
w
]
if
self
.
mode
==
1
:
mask
=
1
-
mask
mask
=
np
.
expand_dims
(
mask
,
axis
=
0
)
img
=
(
img
*
mask
).
astype
(
img
.
dtype
)
return
img
ppcls/data/preprocess/ops/hide_and_seek.py
0 → 100644
浏览文件 @
1d9c5710
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code is based on https://github.com/kkanshul/Hide-and-Seek
import
numpy
as
np
import
random
class
HideAndSeek
(
object
):
def
__init__
(
self
):
# possible grid size, 0 means no hiding
self
.
grid_sizes
=
[
0
,
16
,
32
,
44
,
56
]
# hiding probability
self
.
hide_prob
=
0.5
def
__call__
(
self
,
img
):
# randomly choose one grid size
grid_size
=
np
.
random
.
choice
(
self
.
grid_sizes
)
_
,
h
,
w
=
img
.
shape
# hide the patches
if
grid_size
==
0
:
return
img
for
x
in
range
(
0
,
w
,
grid_size
):
for
y
in
range
(
0
,
h
,
grid_size
):
x_end
=
min
(
w
,
x
+
grid_size
)
y_end
=
min
(
h
,
y
+
grid_size
)
if
(
random
.
random
()
<=
self
.
hide_prob
):
img
[:,
x
:
x_end
,
y
:
y_end
]
=
0
return
img
ppcls/data/preprocess/ops/operators.py
0 → 100644
浏览文件 @
1d9c5710
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
unicode_literals
import
six
import
math
import
random
import
cv2
import
numpy
as
np
from
PIL
import
Image
from
.autoaugment
import
ImageNetPolicy
from
.functional
import
augmentations
class
OperatorParamError
(
ValueError
):
""" OperatorParamError
"""
pass
class
DecodeImage
(
object
):
""" decode image """
def
__init__
(
self
,
to_rgb
=
True
,
to_np
=
False
,
channel_first
=
False
):
self
.
to_rgb
=
to_rgb
self
.
to_np
=
to_np
# to numpy
self
.
channel_first
=
channel_first
# only enabled when to_np is True
def
__call__
(
self
,
img
):
if
six
.
PY2
:
assert
type
(
img
)
is
str
and
len
(
img
)
>
0
,
"invalid input 'img' in DecodeImage"
else
:
assert
type
(
img
)
is
bytes
and
len
(
img
)
>
0
,
"invalid input 'img' in DecodeImage"
data
=
np
.
frombuffer
(
img
,
dtype
=
'uint8'
)
img
=
cv2
.
imdecode
(
data
,
1
)
if
self
.
to_rgb
:
assert
img
.
shape
[
2
]
==
3
,
'invalid shape of image[%s]'
%
(
img
.
shape
)
img
=
img
[:,
:,
::
-
1
]
if
self
.
channel_first
:
img
=
img
.
transpose
((
2
,
0
,
1
))
return
img
class
ResizeImage
(
object
):
""" resize image """
def
__init__
(
self
,
size
=
None
,
resize_short
=
None
,
interpolation
=-
1
):
self
.
interpolation
=
interpolation
if
interpolation
>=
0
else
None
if
resize_short
is
not
None
and
resize_short
>
0
:
self
.
resize_short
=
resize_short
self
.
w
=
None
self
.
h
=
None
elif
size
is
not
None
:
self
.
resize_short
=
None
self
.
w
=
size
if
type
(
size
)
is
int
else
size
[
0
]
self
.
h
=
size
if
type
(
size
)
is
int
else
size
[
1
]
else
:
raise
OperatorParamError
(
"invalid params for ReisizeImage for '
\
'both 'size' and 'resize_short' are None"
)
def
__call__
(
self
,
img
):
img_h
,
img_w
=
img
.
shape
[:
2
]
if
self
.
resize_short
is
not
None
:
percent
=
float
(
self
.
resize_short
)
/
min
(
img_w
,
img_h
)
w
=
int
(
round
(
img_w
*
percent
))
h
=
int
(
round
(
img_h
*
percent
))
else
:
w
=
self
.
w
h
=
self
.
h
if
self
.
interpolation
is
None
:
return
cv2
.
resize
(
img
,
(
w
,
h
))
else
:
return
cv2
.
resize
(
img
,
(
w
,
h
),
interpolation
=
self
.
interpolation
)
class
CropImage
(
object
):
""" crop image """
def
__init__
(
self
,
size
):
if
type
(
size
)
is
int
:
self
.
size
=
(
size
,
size
)
else
:
self
.
size
=
size
# (h, w)
def
__call__
(
self
,
img
):
w
,
h
=
self
.
size
img_h
,
img_w
=
img
.
shape
[:
2
]
w_start
=
(
img_w
-
w
)
//
2
h_start
=
(
img_h
-
h
)
//
2
w_end
=
w_start
+
w
h_end
=
h_start
+
h
return
img
[
h_start
:
h_end
,
w_start
:
w_end
,
:]
class
RandCropImage
(
object
):
""" random crop image """
def
__init__
(
self
,
size
,
scale
=
None
,
ratio
=
None
,
interpolation
=-
1
):
self
.
interpolation
=
interpolation
if
interpolation
>=
0
else
None
if
type
(
size
)
is
int
:
self
.
size
=
(
size
,
size
)
# (h, w)
else
:
self
.
size
=
size
self
.
scale
=
[
0.08
,
1.0
]
if
scale
is
None
else
scale
self
.
ratio
=
[
3.
/
4.
,
4.
/
3.
]
if
ratio
is
None
else
ratio
def
__call__
(
self
,
img
):
size
=
self
.
size
scale
=
self
.
scale
ratio
=
self
.
ratio
aspect_ratio
=
math
.
sqrt
(
random
.
uniform
(
*
ratio
))
w
=
1.
*
aspect_ratio
h
=
1.
/
aspect_ratio
img_h
,
img_w
=
img
.
shape
[:
2
]
bound
=
min
((
float
(
img_w
)
/
img_h
)
/
(
w
**
2
),
(
float
(
img_h
)
/
img_w
)
/
(
h
**
2
))
scale_max
=
min
(
scale
[
1
],
bound
)
scale_min
=
min
(
scale
[
0
],
bound
)
target_area
=
img_w
*
img_h
*
random
.
uniform
(
scale_min
,
scale_max
)
target_size
=
math
.
sqrt
(
target_area
)
w
=
int
(
target_size
*
w
)
h
=
int
(
target_size
*
h
)
i
=
random
.
randint
(
0
,
img_w
-
w
)
j
=
random
.
randint
(
0
,
img_h
-
h
)
img
=
img
[
j
:
j
+
h
,
i
:
i
+
w
,
:]
if
self
.
interpolation
is
None
:
return
cv2
.
resize
(
img
,
size
)
else
:
return
cv2
.
resize
(
img
,
size
,
interpolation
=
self
.
interpolation
)
class
RandFlipImage
(
object
):
""" random flip image
flip_code:
1: Flipped Horizontally
0: Flipped Vertically
-1: Flipped Horizontally & Vertically
"""
def
__init__
(
self
,
flip_code
=
1
):
assert
flip_code
in
[
-
1
,
0
,
1
],
"flip_code should be a value in [-1, 0, 1]"
self
.
flip_code
=
flip_code
def
__call__
(
self
,
img
):
if
random
.
randint
(
0
,
1
)
==
1
:
return
cv2
.
flip
(
img
,
self
.
flip_code
)
else
:
return
img
class
AutoAugment
(
object
):
def
__init__
(
self
):
self
.
policy
=
ImageNetPolicy
()
def
__call__
(
self
,
img
):
from
PIL
import
Image
img
=
np
.
ascontiguousarray
(
img
)
img
=
Image
.
fromarray
(
img
)
img
=
self
.
policy
(
img
)
img
=
np
.
asarray
(
img
)
class
NormalizeImage
(
object
):
""" normalize image such as substract mean, divide std
"""
def
__init__
(
self
,
scale
=
None
,
mean
=
None
,
std
=
None
,
order
=
'chw'
):
if
isinstance
(
scale
,
str
):
scale
=
eval
(
scale
)
self
.
scale
=
np
.
float32
(
scale
if
scale
is
not
None
else
1.0
/
255.0
)
mean
=
mean
if
mean
is
not
None
else
[
0.485
,
0.456
,
0.406
]
std
=
std
if
std
is
not
None
else
[
0.229
,
0.224
,
0.225
]
shape
=
(
3
,
1
,
1
)
if
order
==
'chw'
else
(
1
,
1
,
3
)
self
.
mean
=
np
.
array
(
mean
).
reshape
(
shape
).
astype
(
'float32'
)
self
.
std
=
np
.
array
(
std
).
reshape
(
shape
).
astype
(
'float32'
)
def
__call__
(
self
,
img
):
from
PIL
import
Image
if
isinstance
(
img
,
Image
.
Image
):
img
=
np
.
array
(
img
)
assert
isinstance
(
img
,
np
.
ndarray
),
"invalid input 'img' in NormalizeImage"
return
(
img
.
astype
(
'float32'
)
*
self
.
scale
-
self
.
mean
)
/
self
.
std
class
ToCHWImage
(
object
):
""" convert hwc image to chw image
"""
def
__init__
(
self
):
pass
def
__call__
(
self
,
img
):
from
PIL
import
Image
if
isinstance
(
img
,
Image
.
Image
):
img
=
np
.
array
(
img
)
return
img
.
transpose
((
2
,
0
,
1
))
class
AugMix
(
object
):
""" Perform AugMix augmentation and compute mixture.
"""
def
__init__
(
self
,
prob
=
0.5
,
aug_prob_coeff
=
0.1
,
mixture_width
=
3
,
mixture_depth
=
1
,
aug_severity
=
1
):
"""
Args:
prob: Probability of taking augmix
aug_prob_coeff: Probability distribution coefficients.
mixture_width: Number of augmentation chains to mix per augmented example.
mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]'
aug_severity: Severity of underlying augmentation operators (between 1 to 10).
"""
# fmt: off
self
.
prob
=
prob
self
.
aug_prob_coeff
=
aug_prob_coeff
self
.
mixture_width
=
mixture_width
self
.
mixture_depth
=
mixture_depth
self
.
aug_severity
=
aug_severity
self
.
augmentations
=
augmentations
# fmt: on
def
__call__
(
self
,
image
):
"""Perform AugMix augmentations and compute mixture.
Returns:
mixed: Augmented and mixed image.
"""
if
random
.
random
()
>
self
.
prob
:
# Avoid the warning: the given NumPy array is not writeable
return
np
.
asarray
(
image
).
copy
()
ws
=
np
.
float32
(
np
.
random
.
dirichlet
([
self
.
aug_prob_coeff
]
*
self
.
mixture_width
))
m
=
np
.
float32
(
np
.
random
.
beta
(
self
.
aug_prob_coeff
,
self
.
aug_prob_coeff
))
# image = Image.fromarray(image)
mix
=
np
.
zeros
([
image
.
shape
[
1
],
image
.
shape
[
0
],
3
])
for
i
in
range
(
self
.
mixture_width
):
image_aug
=
image
.
copy
()
image_aug
=
Image
.
fromarray
(
image_aug
)
depth
=
self
.
mixture_depth
if
self
.
mixture_depth
>
0
else
np
.
random
.
randint
(
1
,
4
)
for
_
in
range
(
depth
):
op
=
np
.
random
.
choice
(
self
.
augmentations
)
image_aug
=
op
(
image_aug
,
self
.
aug_severity
)
mix
+=
ws
[
i
]
*
np
.
asarray
(
image_aug
)
mixed
=
(
1
-
m
)
*
image
+
m
*
mix
return
mixed
.
astype
(
np
.
uint8
)
ppcls/data/preprocess/ops/randaugment.py
0 → 100644
浏览文件 @
1d9c5710
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code is based on https://github.com/heartInsert/randaugment
from
PIL
import
Image
,
ImageEnhance
,
ImageOps
import
numpy
as
np
import
random
class
RandAugment
(
object
):
def
__init__
(
self
,
num_layers
=
2
,
magnitude
=
5
,
fillcolor
=
(
128
,
128
,
128
)):
self
.
num_layers
=
num_layers
self
.
magnitude
=
magnitude
self
.
max_level
=
10
abso_level
=
self
.
magnitude
/
self
.
max_level
self
.
level_map
=
{
"shearX"
:
0.3
*
abso_level
,
"shearY"
:
0.3
*
abso_level
,
"translateX"
:
150.0
/
331
*
abso_level
,
"translateY"
:
150.0
/
331
*
abso_level
,
"rotate"
:
30
*
abso_level
,
"color"
:
0.9
*
abso_level
,
"posterize"
:
int
(
4.0
*
abso_level
),
"solarize"
:
256.0
*
abso_level
,
"contrast"
:
0.9
*
abso_level
,
"sharpness"
:
0.9
*
abso_level
,
"brightness"
:
0.9
*
abso_level
,
"autocontrast"
:
0
,
"equalize"
:
0
,
"invert"
:
0
}
# from https://stackoverflow.com/questions/5252170/
# specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
def
rotate_with_fill
(
img
,
magnitude
):
rot
=
img
.
convert
(
"RGBA"
).
rotate
(
magnitude
)
return
Image
.
composite
(
rot
,
Image
.
new
(
"RGBA"
,
rot
.
size
,
(
128
,
)
*
4
),
rot
).
convert
(
img
.
mode
)
rnd_ch_op
=
random
.
choice
self
.
func
=
{
"shearX"
:
lambda
img
,
magnitude
:
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
1
,
magnitude
*
rnd_ch_op
([
-
1
,
1
]),
0
,
0
,
1
,
0
),
Image
.
BICUBIC
,
fillcolor
=
fillcolor
),
"shearY"
:
lambda
img
,
magnitude
:
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
0
,
magnitude
*
rnd_ch_op
([
-
1
,
1
]),
1
,
0
),
Image
.
BICUBIC
,
fillcolor
=
fillcolor
),
"translateX"
:
lambda
img
,
magnitude
:
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
magnitude
*
img
.
size
[
0
]
*
rnd_ch_op
([
-
1
,
1
]),
0
,
1
,
0
),
fillcolor
=
fillcolor
),
"translateY"
:
lambda
img
,
magnitude
:
img
.
transform
(
img
.
size
,
Image
.
AFFINE
,
(
1
,
0
,
0
,
0
,
1
,
magnitude
*
img
.
size
[
1
]
*
rnd_ch_op
([
-
1
,
1
])),
fillcolor
=
fillcolor
),
"rotate"
:
lambda
img
,
magnitude
:
rotate_with_fill
(
img
,
magnitude
),
"color"
:
lambda
img
,
magnitude
:
ImageEnhance
.
Color
(
img
).
enhance
(
1
+
magnitude
*
rnd_ch_op
([
-
1
,
1
])),
"posterize"
:
lambda
img
,
magnitude
:
ImageOps
.
posterize
(
img
,
magnitude
),
"solarize"
:
lambda
img
,
magnitude
:
ImageOps
.
solarize
(
img
,
magnitude
),
"contrast"
:
lambda
img
,
magnitude
:
ImageEnhance
.
Contrast
(
img
).
enhance
(
1
+
magnitude
*
rnd_ch_op
([
-
1
,
1
])),
"sharpness"
:
lambda
img
,
magnitude
:
ImageEnhance
.
Sharpness
(
img
).
enhance
(
1
+
magnitude
*
rnd_ch_op
([
-
1
,
1
])),
"brightness"
:
lambda
img
,
magnitude
:
ImageEnhance
.
Brightness
(
img
).
enhance
(
1
+
magnitude
*
rnd_ch_op
([
-
1
,
1
])),
"autocontrast"
:
lambda
img
,
magnitude
:
ImageOps
.
autocontrast
(
img
),
"equalize"
:
lambda
img
,
magnitude
:
ImageOps
.
equalize
(
img
),
"invert"
:
lambda
img
,
magnitude
:
ImageOps
.
invert
(
img
)
}
def
__call__
(
self
,
img
):
avaiable_op_names
=
list
(
self
.
level_map
.
keys
())
for
layer_num
in
range
(
self
.
num_layers
):
op_name
=
np
.
random
.
choice
(
avaiable_op_names
)
img
=
self
.
func
[
op_name
](
img
,
self
.
level_map
[
op_name
])
return
img
ppcls/data/preprocess/ops/random_erasing.py
0 → 100644
浏览文件 @
1d9c5710
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#This code is based on https://github.com/zhunzhong07/Random-Erasing
import
math
import
random
import
numpy
as
np
class
RandomErasing
(
object
):
def
__init__
(
self
,
EPSILON
=
0.5
,
sl
=
0.02
,
sh
=
0.4
,
r1
=
0.3
,
mean
=
[
0.
,
0.
,
0.
]):
self
.
EPSILON
=
EPSILON
self
.
mean
=
mean
self
.
sl
=
sl
self
.
sh
=
sh
self
.
r1
=
r1
def
__call__
(
self
,
img
):
if
random
.
uniform
(
0
,
1
)
>
self
.
EPSILON
:
return
img
for
attempt
in
range
(
100
):
area
=
img
.
shape
[
1
]
*
img
.
shape
[
2
]
target_area
=
random
.
uniform
(
self
.
sl
,
self
.
sh
)
*
area
aspect_ratio
=
random
.
uniform
(
self
.
r1
,
1
/
self
.
r1
)
h
=
int
(
round
(
math
.
sqrt
(
target_area
*
aspect_ratio
)))
w
=
int
(
round
(
math
.
sqrt
(
target_area
/
aspect_ratio
)))
if
w
<
img
.
shape
[
2
]
and
h
<
img
.
shape
[
1
]:
x1
=
random
.
randint
(
0
,
img
.
shape
[
1
]
-
h
)
y1
=
random
.
randint
(
0
,
img
.
shape
[
2
]
-
w
)
if
img
.
shape
[
0
]
==
3
:
img
[
0
,
x1
:
x1
+
h
,
y1
:
y1
+
w
]
=
self
.
mean
[
0
]
img
[
1
,
x1
:
x1
+
h
,
y1
:
y1
+
w
]
=
self
.
mean
[
1
]
img
[
2
,
x1
:
x1
+
h
,
y1
:
y1
+
w
]
=
self
.
mean
[
2
]
else
:
img
[
0
,
x1
:
x1
+
h
,
y1
:
y1
+
w
]
=
self
.
mean
[
1
]
return
img
return
img
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录