提交 1f8cfbd6 编写于 作者: G gaotingquan

fix: fix augmentation

Fix RandomErasing, RandAugment to be consistent with Timm and compatible with earlier PaddleClas.
Add ColorJitter implemented by PaddleVision and TimmAutoAugment borrowed from Timm Lib.
上级 ef2fd19b
......@@ -14,6 +14,7 @@
from ppcls.data.preprocess.ops.autoaugment import ImageNetPolicy as RawImageNetPolicy
from ppcls.data.preprocess.ops.randaugment import RandAugment as RawRandAugment
from ppcls.data.preprocess.ops.timm_autoaugment import RawTimmAutoAugment
from ppcls.data.preprocess.ops.cutout import Cutout
from ppcls.data.preprocess.ops.hide_and_seek import HideAndSeek
......@@ -31,7 +32,6 @@ from ppcls.data.preprocess.ops.operators import AugMix
from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator
import six
import numpy as np
from PIL import Image
......@@ -47,20 +47,14 @@ class AutoAugment(RawImageNetPolicy):
""" ImageNetPolicy wrapper to auto fit different img types """
def __init__(self, *args, **kwargs):
if six.PY2:
super(AutoAugment, self).__init__(*args, **kwargs)
else:
super().__init__(*args, **kwargs)
super().__init__(*args, **kwargs)
def __call__(self, img):
if not isinstance(img, Image.Image):
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
if six.PY2:
img = super(AutoAugment, self).__call__(img)
else:
img = super().__call__(img)
img = super().__call__(img)
if isinstance(img, Image.Image):
img = np.asarray(img)
......@@ -72,20 +66,33 @@ class RandAugment(RawRandAugment):
""" RandAugment wrapper to auto fit different img types """
def __init__(self, *args, **kwargs):
if six.PY2:
super(RandAugment, self).__init__(*args, **kwargs)
else:
super().__init__(*args, **kwargs)
super().__init__(*args, **kwargs)
def __call__(self, img):
if not isinstance(img, Image.Image):
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
if six.PY2:
img = super(RandAugment, self).__call__(img)
else:
img = super().__call__(img)
img = super().__call__(img)
if isinstance(img, Image.Image):
img = np.asarray(img)
return img
class TimmAutoAugment(RawTimmAutoAugment):
""" TimmAutoAugment wrapper to auto fit different img tyeps. """
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __call__(self, img):
if not isinstance(img, Image.Image):
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
img = super().__call__(img)
if isinstance(img, Image.Image):
img = np.asarray(img)
......
......@@ -26,6 +26,7 @@ import random
import cv2
import numpy as np
from PIL import Image
from paddle.vision.transforms import ColorJitter as RawColorJitter
from .autoaugment import ImageNetPolicy
from .functional import augmentations
......@@ -363,3 +364,20 @@ class AugMix(object):
mixed = (1 - m) * image + m * mix
return mixed.astype(np.uint8)
class ColorJitter(RawColorJitter):
"""ColorJitter.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __call__(self, img):
if not isinstance(img, Image.Image):
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
img = super()._apply_image(img)
if isinstance(img, Image.Image):
img = np.asarray(img)
return img
......@@ -12,7 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#This code is based on https://github.com/zhunzhong07/Random-Erasing
#This code is adapted from https://github.com/zhunzhong07/Random-Erasing, and refer to Timm.
from functools import partial
import math
import random
......@@ -20,36 +22,69 @@ import random
import numpy as np
class Pixels(object):
def __init__(self, mode="const", mean=[0., 0., 0.]):
self._mode = mode
self._mean = mean
def __call__(self, h=224, w=224, c=3):
if self._mode == "rand":
return np.random.normal(size=(1, 1, 3))
elif self._mode == "pixel":
return np.random.normal(size=(h, w, c))
elif self._mode == "const":
return self._mean
else:
raise Exception(
"Invalid mode in RandomErasing, only support \"const\", \"rand\", \"pixel\""
)
class RandomErasing(object):
def __init__(self, EPSILON=0.5, sl=0.02, sh=0.4, r1=0.3,
mean=[0., 0., 0.]):
self.EPSILON = EPSILON
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
"""RandomErasing.
"""
def __init__(self,
EPSILON=0.5,
sl=0.02,
sh=0.4,
r1=0.3,
mean=[0., 0., 0.],
attempt=100,
use_log_aspect=False,
mode='const'):
self.EPSILON = eval(EPSILON) if isinstance(EPSILON, str) else EPSILON
self.sl = eval(sl) if isinstance(sl, str) else sl
self.sh = eval(sh) if isinstance(sh, str) else sh
r1 = eval(r1) if isinstance(r1, str) else r1
self.r1 = (math.log(r1), math.log(1 / r1)) if use_log_aspect else (
r1, 1 / r1)
self.use_log_aspect = use_log_aspect
self.attempt = attempt
self.get_pixels = Pixels(mode, mean)
def __call__(self, img):
if random.uniform(0, 1) > self.EPSILON:
if random.random() > self.EPSILON:
return img
for _ in range(100):
for _ in range(self.attempt):
area = img.shape[0] * img.shape[1]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
aspect_ratio = random.uniform(*self.r1)
if self.use_log_aspect:
aspect_ratio = math.exp(aspect_ratio)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img.shape[1] and h < img.shape[0]:
pixels = self.get_pixels(h, w, img.shape[2])
x1 = random.randint(0, img.shape[0] - h)
y1 = random.randint(0, img.shape[1] - w)
if img.shape[0] == 3:
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
img[x1:x1 + h, y1:y1 + w, 1] = self.mean[1]
img[x1:x1 + h, y1:y1 + w, 2] = self.mean[2]
if img.shape[2] == 3:
img[x1:x1 + h, y1:y1 + w, :] = pixels
else:
img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
img[x1:x1 + h, y1:y1 + w, 0] = pixels[0]
return img
return img
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册