operators.py 12.7 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

G
gaotingquan 已提交
20
from functools import partial
F
Felix 已提交
21 22 23 24 25 26
import six
import math
import random
import cv2
import numpy as np
from PIL import Image
G
gaotingquan 已提交
27
from paddle.vision.transforms import ColorJitter as RawColorJitter
H
HydrogenSulfate 已提交
28
from paddle.vision.transforms import Pad
F
Felix 已提交
29 30 31

from .autoaugment import ImageNetPolicy
from .functional import augmentations
G
gaotingquan 已提交
32 33 34 35 36 37 38 39 40 41
from ppcls.utils import logger


class UnifiedResize(object):
    def __init__(self, interpolation=None, backend="cv2"):
        _cv2_interp_from_str = {
            'nearest': cv2.INTER_NEAREST,
            'bilinear': cv2.INTER_LINEAR,
            'area': cv2.INTER_AREA,
            'bicubic': cv2.INTER_CUBIC,
42 43
            'lanczos': cv2.INTER_LANCZOS4,
            'random': (cv2.INTER_LINEAR, cv2.INTER_CUBIC)
G
gaotingquan 已提交
44 45 46 47 48 49 50
        }
        _pil_interp_from_str = {
            'nearest': Image.NEAREST,
            'bilinear': Image.BILINEAR,
            'bicubic': Image.BICUBIC,
            'box': Image.BOX,
            'lanczos': Image.LANCZOS,
51 52
            'hamming': Image.HAMMING,
            'random': (Image.BILINEAR, Image.BICUBIC)
G
gaotingquan 已提交
53 54
        }

55 56 57 58 59
        def _cv2_resize(src, size, resample):
            if isinstance(resample, tuple):
                resample = random.choice(resample)
            return cv2.resize(src, size, interpolation=resample)

G
gaotingquan 已提交
60
        def _pil_resize(src, size, resample):
61 62
            if isinstance(resample, tuple):
                resample = random.choice(resample)
G
gaotingquan 已提交
63 64 65 66 67 68 69
            pil_img = Image.fromarray(src)
            pil_img = pil_img.resize(size, resample)
            return np.asarray(pil_img)

        if backend.lower() == "cv2":
            if isinstance(interpolation, str):
                interpolation = _cv2_interp_from_str[interpolation.lower()]
70
            # compatible with opencv < version 4.4.0
G
gaotingquan 已提交
71
            elif interpolation is None:
72
                interpolation = cv2.INTER_LINEAR
73
            self.resize_func = partial(_cv2_resize, resample=interpolation)
G
gaotingquan 已提交
74 75 76 77 78 79 80 81 82 83 84
        elif backend.lower() == "pil":
            if isinstance(interpolation, str):
                interpolation = _pil_interp_from_str[interpolation.lower()]
            self.resize_func = partial(_pil_resize, resample=interpolation)
        else:
            logger.warning(
                f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
            )
            self.resize_func = cv2.resize

    def __call__(self, src, size):
H
HydrogenSulfate 已提交
85 86
        if isinstance(size, list):
            size = tuple(size)
G
gaotingquan 已提交
87
        return self.resize_func(src, size)
F
Felix 已提交
88

D
dongshuilong 已提交
89

F
Felix 已提交
90 91 92 93 94
class OperatorParamError(ValueError):
    """ OperatorParamError
    """
    pass

D
dongshuilong 已提交
95

F
Felix 已提交
96 97 98 99 100 101 102 103 104
class DecodeImage(object):
    """ decode image """

    def __init__(self, to_rgb=True, to_np=False, channel_first=False):
        self.to_rgb = to_rgb
        self.to_np = to_np  # to numpy
        self.channel_first = channel_first  # only enabled when to_np is True

    def __call__(self, img):
H
HydrogenSulfate 已提交
105 106 107 108 109 110 111 112 113
        if not isinstance(img, np.ndarray):
            if six.PY2:
                assert type(img) is str and len(
                    img) > 0, "invalid input 'img' in DecodeImage"
            else:
                assert type(img) is bytes and len(
                    img) > 0, "invalid input 'img' in DecodeImage"
            data = np.frombuffer(img, dtype='uint8')
            img = cv2.imdecode(data, 1)
F
Felix 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127
        if self.to_rgb:
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
                img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        return img


class ResizeImage(object):
    """ resize image """

G
gaotingquan 已提交
128 129 130 131 132
    def __init__(self,
                 size=None,
                 resize_short=None,
                 interpolation=None,
                 backend="cv2"):
F
Felix 已提交
133 134 135 136 137 138 139 140 141 142 143 144
        if resize_short is not None and resize_short > 0:
            self.resize_short = resize_short
            self.w = None
            self.h = None
        elif size is not None:
            self.resize_short = None
            self.w = size if type(size) is int else size[0]
            self.h = size if type(size) is int else size[1]
        else:
            raise OperatorParamError("invalid params for ReisizeImage for '\
                'both 'size' and 'resize_short' are None")

G
gaotingquan 已提交
145 146 147
        self._resize_func = UnifiedResize(
            interpolation=interpolation, backend=backend)

F
Felix 已提交
148 149 150 151 152 153 154 155 156
    def __call__(self, img):
        img_h, img_w = img.shape[:2]
        if self.resize_short is not None:
            percent = float(self.resize_short) / min(img_w, img_h)
            w = int(round(img_w * percent))
            h = int(round(img_h * percent))
        else:
            w = self.w
            h = self.h
G
gaotingquan 已提交
157
        return self._resize_func(img, (w, h))
F
Felix 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182


class CropImage(object):
    """ crop image """

    def __init__(self, size):
        if type(size) is int:
            self.size = (size, size)
        else:
            self.size = size  # (h, w)

    def __call__(self, img):
        w, h = self.size
        img_h, img_w = img.shape[:2]
        w_start = (img_w - w) // 2
        h_start = (img_h - h) // 2

        w_end = w_start + w
        h_end = h_start + h
        return img[h_start:h_end, w_start:w_end, :]


class RandCropImage(object):
    """ random crop image """

G
gaotingquan 已提交
183 184 185 186 187 188
    def __init__(self,
                 size,
                 scale=None,
                 ratio=None,
                 interpolation=None,
                 backend="cv2"):
F
Felix 已提交
189 190 191 192 193 194 195 196
        if type(size) is int:
            self.size = (size, size)  # (h, w)
        else:
            self.size = size

        self.scale = [0.08, 1.0] if scale is None else scale
        self.ratio = [3. / 4., 4. / 3.] if ratio is None else ratio

G
gaotingquan 已提交
197 198 199
        self._resize_func = UnifiedResize(
            interpolation=interpolation, backend=backend)

F
Felix 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    def __call__(self, img):
        size = self.size
        scale = self.scale
        ratio = self.ratio

        aspect_ratio = math.sqrt(random.uniform(*ratio))
        w = 1. * aspect_ratio
        h = 1. / aspect_ratio

        img_h, img_w = img.shape[:2]

        bound = min((float(img_w) / img_h) / (w**2),
                    (float(img_h) / img_w) / (h**2))
        scale_max = min(scale[1], bound)
        scale_min = min(scale[0], bound)

        target_area = img_w * img_h * random.uniform(scale_min, scale_max)
        target_size = math.sqrt(target_area)
        w = int(target_size * w)
        h = int(target_size * h)

        i = random.randint(0, img_w - w)
        j = random.randint(0, img_h - h)

        img = img[j:j + h, i:i + w, :]
G
gaotingquan 已提交
225 226

        return self._resize_func(img, size)
F
Felix 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264


class RandFlipImage(object):
    """ random flip image
        flip_code:
            1: Flipped Horizontally
            0: Flipped Vertically
            -1: Flipped Horizontally & Vertically
    """

    def __init__(self, flip_code=1):
        assert flip_code in [-1, 0, 1
                             ], "flip_code should be a value in [-1, 0, 1]"
        self.flip_code = flip_code

    def __call__(self, img):
        if random.randint(0, 1) == 1:
            return cv2.flip(img, self.flip_code)
        else:
            return img


class AutoAugment(object):
    def __init__(self):
        self.policy = ImageNetPolicy()

    def __call__(self, img):
        from PIL import Image
        img = np.ascontiguousarray(img)
        img = Image.fromarray(img)
        img = self.policy(img)
        img = np.asarray(img)


class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
265 266 267 268 269 270 271
    def __init__(self,
                 scale=None,
                 mean=None,
                 std=None,
                 order='chw',
                 output_fp16=False,
                 channel_num=3):
F
Felix 已提交
272 273
        if isinstance(scale, str):
            scale = eval(scale)
littletomatodonkey's avatar
littletomatodonkey 已提交
274 275 276 277 278
        assert channel_num in [
            3, 4
        ], "channel number of input image should be set to 3 or 4."
        self.channel_num = channel_num
        self.output_dtype = 'float16' if output_fp16 else 'float32'
F
Felix 已提交
279
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
littletomatodonkey's avatar
littletomatodonkey 已提交
280
        self.order = order
F
Felix 已提交
281 282 283
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

littletomatodonkey's avatar
littletomatodonkey 已提交
284
        shape = (3, 1, 1) if self.order == 'chw' else (1, 1, 3)
F
Felix 已提交
285 286 287 288 289 290 291 292 293 294
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
littletomatodonkey's avatar
littletomatodonkey 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308

        img = (img.astype('float32') * self.scale - self.mean) / self.std

        if self.channel_num == 4:
            img_h = img.shape[1] if self.order == 'chw' else img.shape[0]
            img_w = img.shape[2] if self.order == 'chw' else img.shape[1]
            pad_zeros = np.zeros(
                (1, img_h, img_w)) if self.order == 'chw' else np.zeros(
                    (img_h, img_w, 1))
            img = (np.concatenate(
                (img, pad_zeros), axis=0)
                   if self.order == 'chw' else np.concatenate(
                       (img, pad_zeros), axis=2))
        return img.astype(self.output_dtype)
F
Felix 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self):
        pass

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        return img.transpose((2, 0, 1))


class AugMix(object):
    """ Perform AugMix augmentation and compute mixture.
    """

D
dongshuilong 已提交
330 331 332 333 334 335
    def __init__(self,
                 prob=0.5,
                 aug_prob_coeff=0.1,
                 mixture_width=3,
                 mixture_depth=1,
                 aug_severity=1):
F
Felix 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        """
        Args:
            prob: Probability of taking augmix
            aug_prob_coeff: Probability distribution coefficients.
            mixture_width: Number of augmentation chains to mix per augmented example.
            mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]'
            aug_severity: Severity of underlying augmentation operators (between 1 to 10).
        """
        # fmt: off
        self.prob = prob
        self.aug_prob_coeff = aug_prob_coeff
        self.mixture_width = mixture_width
        self.mixture_depth = mixture_depth
        self.aug_severity = aug_severity
        self.augmentations = augmentations
        # fmt: on

    def __call__(self, image):
        """Perform AugMix augmentations and compute mixture.
        Returns:
          mixed: Augmented and mixed image.
        """
        if random.random() > self.prob:
            # Avoid the warning: the given NumPy array is not writeable
            return np.asarray(image).copy()

        ws = np.float32(
            np.random.dirichlet([self.aug_prob_coeff] * self.mixture_width))
D
dongshuilong 已提交
364 365
        m = np.float32(
            np.random.beta(self.aug_prob_coeff, self.aug_prob_coeff))
F
Felix 已提交
366 367

        # image = Image.fromarray(image)
D
dongshuilong 已提交
368
        mix = np.zeros(image.shape)
F
Felix 已提交
369 370 371
        for i in range(self.mixture_width):
            image_aug = image.copy()
            image_aug = Image.fromarray(image_aug)
D
dongshuilong 已提交
372 373
            depth = self.mixture_depth if self.mixture_depth > 0 else np.random.randint(
                1, 4)
F
Felix 已提交
374 375 376 377 378 379 380
            for _ in range(depth):
                op = np.random.choice(self.augmentations)
                image_aug = op(image_aug, self.aug_severity)
            mix += ws[i] * np.asarray(image_aug)

        mixed = (1 - m) * image + m * mix
        return mixed.astype(np.uint8)
G
gaotingquan 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397


class ColorJitter(RawColorJitter):
    """ColorJitter.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def __call__(self, img):
        if not isinstance(img, Image.Image):
            img = np.ascontiguousarray(img)
            img = Image.fromarray(img)
        img = super()._apply_image(img)
        if isinstance(img, Image.Image):
            img = np.asarray(img)
        return img