resnet_vd.py 10.9 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23 24 25
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
26 27

import math
W
WuHaobo 已提交
28 29

__all__ = [
30
    "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
W
WuHaobo 已提交
31 32 33
]


littletomatodonkey's avatar
littletomatodonkey 已提交
34
class ConvBNLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
35 36 37 38 39 40 41 42 43 44
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
                 lr_mult=1.0,
                 name=None):
45 46
        super(ConvBNLayer, self).__init__()
        self.is_vd_mode = is_vd_mode
littletomatodonkey's avatar
littletomatodonkey 已提交
47 48 49 50 51 52
        self._pool2d_avg = AvgPool2d(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
53
            stride=stride,
W
WuHaobo 已提交
54 55
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
56 57
            weight_attr=ParamAttr(
                name=name + "_weights", learning_rate=lr_mult),
W
WuHaobo 已提交
58 59 60 61 62
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
63 64
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
65
            act=act,
66 67 68 69 70 71 72 73 74 75 76 77
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y

W
WuHaobo 已提交
78

littletomatodonkey's avatar
littletomatodonkey 已提交
79
class BottleneckBlock(nn.Layer):
80 81 82 83 84 85
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
86
                 lr_mult=1.0,
87 88 89 90 91
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
92 93 94
            num_filters=num_filters,
            filter_size=1,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
95
            lr_mult=lr_mult,
W
WuHaobo 已提交
96
            name=name + "_branch2a")
97 98
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
99 100 101 102
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
103
            lr_mult=lr_mult,
W
WuHaobo 已提交
104
            name=name + "_branch2b")
105 106
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
107 108 109
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
110
            lr_mult=lr_mult,
W
WuHaobo 已提交
111 112
            name=name + "_branch2c")

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
W
WuHaobo 已提交
128

129 130 131 132
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
133
        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
littletomatodonkey's avatar
littletomatodonkey 已提交
134
        return y
W
WuHaobo 已提交
135

136

littletomatodonkey's avatar
littletomatodonkey 已提交
137
class BasicBlock(nn.Layer):
138 139 140 141 142 143
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
144
                 lr_mult=1.0,
145
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
146
        super(BasicBlock, self).__init__()
147 148 149
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
150 151 152
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
153
            act='relu',
W
WuHaobo 已提交
154
            name=name + "_branch2a")
155 156
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
157 158 159 160 161
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
181
        y = paddle.elementwise_add(x=short, y=conv1, act='relu')
littletomatodonkey's avatar
littletomatodonkey 已提交
182
        return y
183 184


littletomatodonkey's avatar
littletomatodonkey 已提交
185
class ResNet_vd(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
186 187 188 189
    def __init__(self,
                 layers=50,
                 class_dim=1000,
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
190 191 192 193 194 195 196 197
        super(ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

littletomatodonkey's avatar
littletomatodonkey 已提交
198 199 200 201 202 203 204 205 206 207
        self.lr_mult_list = lr_mult_list
        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
        assert len(
            self.lr_mult_list
        ) == 5, "lr_mult_list length should should be 5 but got {}".format(
            len(self.lr_mult_list))

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
228
            lr_mult=self.lr_mult_list[0],
229 230 231 232 233 234 235
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
236
            lr_mult=self.lr_mult_list[0],
237 238 239 240 241 242 243
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
244
            lr_mult=self.lr_mult_list[0],
245
            name="conv1_3")
littletomatodonkey's avatar
littletomatodonkey 已提交
246
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
W
WuHaobo 已提交
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
littletomatodonkey's avatar
littletomatodonkey 已提交
269
                            lr_mult=self.lr_mult_list[block + 1],
270 271 272 273 274 275 276 277
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
278
                    basic_block = self.add_sublayer(
279
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
280
                        BasicBlock(
281 282 283 284 285 286
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
littletomatodonkey's avatar
littletomatodonkey 已提交
287 288
                            name=conv_name,
                            lr_mult=lr_mult))
littletomatodonkey's avatar
littletomatodonkey 已提交
289
                    self.block_list.append(basic_block)
290 291
                    shortcut = True

littletomatodonkey's avatar
littletomatodonkey 已提交
292
        self.pool2d_avg = AdaptiveAvgPool2d(1)
293 294 295 296 297 298 299 300

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
301 302
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
303 304 305 306 307 308 309 310 311 312
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
313
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
314 315 316 317 318 319
        y = self.out(y)
        return y


def ResNet18_vd(**args):
    model = ResNet_vd(layers=18, **args)
W
WuHaobo 已提交
320 321 322
    return model


323 324
def ResNet34_vd(**args):
    model = ResNet_vd(layers=34, **args)
W
WuHaobo 已提交
325 326 327
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
328
def ResNet50_vd(**args):
329
    model = ResNet_vd(layers=50, **args)
W
WuHaobo 已提交
330 331 332
    return model


333 334
def ResNet101_vd(**args):
    model = ResNet_vd(layers=101, **args)
W
WuHaobo 已提交
335 336 337
    return model


338 339
def ResNet152_vd(**args):
    model = ResNet_vd(layers=152, **args)
W
WuHaobo 已提交
340 341 342
    return model


343 344
def ResNet200_vd(**args):
    model = ResNet_vd(layers=200, **args)
W
WuHaobo 已提交
345
    return model