resnet_vd.py 10.1 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

__all__ = [
    "ResNet", "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd",
    "ResNet152_vd", "ResNet200_vd"
]


class ResNet():
littletomatodonkey's avatar
littletomatodonkey 已提交
32 33 34 35 36
    def __init__(self,
                 layers=50,
                 is_3x3=False,
                 postfix_name="",
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
W
WuHaobo 已提交
37 38
        self.layers = layers
        self.is_3x3 = is_3x3
littletomatodonkey's avatar
littletomatodonkey 已提交
39 40 41 42 43 44 45
        self.postfix_name = "" if postfix_name is None else postfix_name
        self.lr_mult_list = lr_mult_list
        assert len(
            self.lr_mult_list
        ) == 5, "lr_mult_list length in ResNet must be 5 but got {}!!".format(
            len(self.lr_mult_list))
        self.curr_stage = 0
W
WuHaobo 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    def net(self, input, class_dim=1000):
        is_3x3 = self.is_3x3
        layers = self.layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_filters = [64, 128, 256, 512]
        if is_3x3 == False:
            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
        else:
            conv = self.conv_bn_layer(
                input=input,
                num_filters=32,
                filter_size=3,
                stride=2,
                act='relu',
                name='conv1_1')
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=32,
                filter_size=3,
                stride=1,
                act='relu',
                name='conv1_2')
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=64,
                filter_size=3,
                stride=1,
                act='relu',
                name='conv1_3')

        conv = fluid.layers.pool2d(
            input=conv,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')

        if layers >= 50:
            for block in range(len(depth)):
littletomatodonkey's avatar
littletomatodonkey 已提交
104
                self.curr_stage += 1
W
WuHaobo 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                for i in range(depth[block]):
                    if layers in [101, 152, 200] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv = self.bottleneck_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        if_first=block == i == 0,
                        name=conv_name)
        else:
            for block in range(len(depth)):
littletomatodonkey's avatar
littletomatodonkey 已提交
121
                self.curr_stage += 1
W
WuHaobo 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv = self.basic_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        if_first=block == i == 0,
                        name=conv_name)

        pool = fluid.layers.pool2d(
            input=conv, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)

        out = fluid.layers.fc(
            input=pool,
            size=class_dim,
            param_attr=fluid.param_attr.ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
139
                name="fc_0.w_0" + self.postfix_name,
W
WuHaobo 已提交
140
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
littletomatodonkey's avatar
littletomatodonkey 已提交
141
            bias_attr=ParamAttr(name="fc_0.b_0" + self.postfix_name))
W
WuHaobo 已提交
142 143 144 145 146 147 148 149 150 151 152

        return out

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
153
        lr_mult = self.lr_mult_list[self.curr_stage]
W
WuHaobo 已提交
154 155 156 157 158 159 160 161
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
162
            param_attr=ParamAttr(name=name + "_weights" + self.postfix_name),
W
WuHaobo 已提交
163 164 165 166 167 168 169 170
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
littletomatodonkey's avatar
littletomatodonkey 已提交
171 172 173 174
            param_attr=ParamAttr(name=bn_name + '_scale' + self.postfix_name),
            bias_attr=ParamAttr(bn_name + '_offset' + self.postfix_name),
            moving_mean_name=bn_name + '_mean' + self.postfix_name,
            moving_variance_name=bn_name + '_variance' + self.postfix_name)
W
WuHaobo 已提交
175 176 177 178 179 180 181 182 183

    def conv_bn_layer_new(self,
                          input,
                          num_filters,
                          filter_size,
                          stride=1,
                          groups=1,
                          act=None,
                          name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
184
        lr_mult = self.lr_mult_list[self.curr_stage]
W
WuHaobo 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        pool = fluid.layers.pool2d(
            input=input,
            pool_size=2,
            pool_stride=2,
            pool_padding=0,
            pool_type='avg',
            ceil_mode=True)

        conv = fluid.layers.conv2d(
            input=pool,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=1,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
201 202 203
            param_attr=ParamAttr(
                name=name + "_weights" + self.postfix_name,
                learning_rate=lr_mult),
W
WuHaobo 已提交
204 205 206 207 208 209 210 211
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
littletomatodonkey's avatar
littletomatodonkey 已提交
212 213 214 215 216 217 218 219
            param_attr=ParamAttr(
                name=bn_name + '_scale' + self.postfix_name,
                learning_rate=lr_mult),
            bias_attr=ParamAttr(
                bn_name + '_offset' + self.postfix_name,
                learning_rate=lr_mult),
            moving_mean_name=bn_name + '_mean' + self.postfix_name,
            moving_variance_name=bn_name + '_variance' + self.postfix_name)
W
WuHaobo 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    def shortcut(self, input, ch_out, stride, name, if_first=False):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            if if_first:
                return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
            else:
                return self.conv_bn_layer_new(
                    input, ch_out, 1, stride, name=name)
        elif if_first:
            return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name, if_first):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
        conv2 = self.conv_bn_layer(
            input=conv1,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        short = self.shortcut(
            input,
            num_filters * 4,
            stride,
            if_first=if_first,
            name=name + "_branch1")

        return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')

    def basic_block(self, input, num_filters, stride, name, if_first):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self.shortcut(
            input,
            num_filters,
            stride,
            if_first=if_first,
            name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')


def ResNet18_vd():
    model = ResNet(layers=18, is_3x3=True)
    return model


def ResNet34_vd():
    model = ResNet(layers=34, is_3x3=True)
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
297 298
def ResNet50_vd(**args):
    model = ResNet(layers=50, is_3x3=True, **args)
W
WuHaobo 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    return model


def ResNet101_vd():
    model = ResNet(layers=101, is_3x3=True)
    return model


def ResNet152_vd():
    model = ResNet(layers=152, is_3x3=True)
    return model


def ResNet200_vd():
    model = ResNet(layers=200, is_3x3=True)
    return model