resnet_vd.py 10.3 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20 21 22
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25 26
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
27 28

__all__ = [
29
    "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
W
WuHaobo 已提交
30 31 32
]


33 34 35 36 37 38 39 40 41
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
W
WuHaobo 已提交
42
            act=None,
43 44 45 46 47
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = Pool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50 51 52
            pool_size=2,
            pool_stride=2,
            pool_padding=0,
            pool_type='avg',
            ceil_mode=True)
53 54
        self._conv = Conv2D(
            num_channels=num_channels,
W
WuHaobo 已提交
55 56
            num_filters=num_filters,
            filter_size=filter_size,
57
            stride=stride,
W
WuHaobo 已提交
58 59 60
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
61
            param_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
62 63 64 65 66
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
67 68
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
69
            act=act,
70 71 72 73 74 75 76 77 78 79 80 81
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y

W
WuHaobo 已提交
82

83 84 85 86 87 88 89 90 91 92 93 94
class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
95 96 97 98
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
99 100
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
101 102 103 104 105
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
106 107
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
108 109 110 111 112
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
W
WuHaobo 已提交
128

129 130 131 132 133 134 135 136
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)
W
WuHaobo 已提交
137

138

littletomatodonkey's avatar
littletomatodonkey 已提交
139
class BasicBlock(fluid.dygraph.Layer):
140 141 142 143 144 145 146
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
147
        super(BasicBlock, self).__init__()
148 149 150
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
151 152 153
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
154
            act='relu',
W
WuHaobo 已提交
155
            name=name + "_branch2a")
156 157
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
158 159 160 161 162
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv1)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class ResNet_vd(fluid.dygraph.Layer):
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
W
WuHaobo 已提交
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
265
                    basic_block = self.add_sublayer(
266
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
267
                        BasicBlock(
268 269 270 271 272 273 274
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
275
                    self.block_list.append(basic_block)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
                    shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y


def ResNet18_vd(**args):
    model = ResNet_vd(layers=18, **args)
W
WuHaobo 已提交
308 309 310
    return model


311 312
def ResNet34_vd(**args):
    model = ResNet_vd(layers=34, **args)
W
WuHaobo 已提交
313 314 315
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
316
def ResNet50_vd(**args):
317
    model = ResNet_vd(layers=50, **args)
W
WuHaobo 已提交
318 319 320
    return model


321 322
def ResNet101_vd(**args):
    model = ResNet_vd(layers=101, **args)
W
WuHaobo 已提交
323 324 325
    return model


326 327
def ResNet152_vd(**args):
    model = ResNet_vd(layers=152, **args)
W
WuHaobo 已提交
328 329 330
    return model


331 332
def ResNet200_vd(**args):
    model = ResNet_vd(layers=200, **args)
W
WuHaobo 已提交
333
    return model