paddleclas.py 21.6 KB
Newer Older
T
Tingquan Gao 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(__file__)
T
Tingquan Gao 已提交
18 19 20
sys.path.append(os.path.join(__dir__, ""))
sys.path.append(os.path.join(__dir__, "deploy"))

21
from typing import Union, Generator
T
Tingquan Gao 已提交
22 23
import argparse
import shutil
T
Tingquan Gao 已提交
24
import textwrap
T
Tingquan Gao 已提交
25 26 27 28
import tarfile
import requests
import warnings
from functools import partial
T
Tingquan Gao 已提交
29
from difflib import SequenceMatcher
C
chenziheng 已提交
30 31 32 33

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
34 35 36 37 38 39 40
from prettytable import PrettyTable

from deploy.python.predict_cls import ClsPredictor
from deploy.utils.get_image_list import get_image_list
from deploy.utils import config

from ppcls.arch.backbone import *
G
gaotingquan 已提交
41
from ppcls.utils.logger import init_logger
T
Tingquan Gao 已提交
42

43 44 45
# for building model with loading pretrained weights from backbone
init_logger()

T
Tingquan Gao 已提交
46
__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
47

C
chenziheng 已提交
48
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
49 50 51 52
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
MODEL_SERIES = {
T
Tingquan Gao 已提交
53 54 55
    "AlexNet": ["AlexNet"],
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
56 57 58 59
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
60 61 62 63 64
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
65 66 67 68
    "DLA": [
        "DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x",
        "DLA102x2", "DLA169"
    ],
T
Tingquan Gao 已提交
69 70 71 72 73 74
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
G
gaotingquan 已提交
75
    "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
T
Tingquan Gao 已提交
76 77
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
78
    "HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"],
T
Tingquan Gao 已提交
79 80 81 82 83 84
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
G
gaotingquan 已提交
85
    "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
T
Tingquan Gao 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
103 104 105 106
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
107
    "RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"],
T
Tingquan Gao 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
132 133
    "ReXNet":
    ["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"],
T
Tingquan Gao 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
155 156 157 158
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
T
Tingquan Gao 已提交
159 160 161 162 163 164 165 166 167 168
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
169 170 171
}


T
Tingquan Gao 已提交
172 173
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
174 175
    """

T
Tingquan Gao 已提交
176
    def __init__(self, message=""):
T
Tingquan Gao 已提交
177 178 179
        super().__init__(message)


T
Tingquan Gao 已提交
180 181 182 183 184 185 186 187
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


T
Tingquan Gao 已提交
188 189 190 191 192 193 194 195 196
def init_config(model_name,
                inference_model_dir,
                use_gpu=True,
                batch_size=1,
                topk=5,
                **kwargs):
    imagenet1k_map_path = os.path.join(
        os.path.abspath(__dir__), "ppcls/utils/imagenet1k_label_list.txt")
    cfg = {
T
Tingquan Gao 已提交
197
        "Global": {
T
Tingquan Gao 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
            "infer_imgs": kwargs["infer_imgs"]
            if "infer_imgs" in kwargs else False,
            "model_name": model_name,
            "inference_model_dir": inference_model_dir,
            "batch_size": batch_size,
            "use_gpu": use_gpu,
            "enable_mkldnn": kwargs["enable_mkldnn"]
            if "enable_mkldnn" in kwargs else False,
            "cpu_num_threads": kwargs["cpu_num_threads"]
            if "cpu_num_threads" in kwargs else 1,
            "enable_benchmark": False,
            "use_fp16": kwargs["use_fp16"] if "use_fp16" in kwargs else False,
            "ir_optim": True,
            "use_tensorrt": kwargs["use_tensorrt"]
            if "use_tensorrt" in kwargs else False,
            "gpu_mem": kwargs["gpu_mem"] if "gpu_mem" in kwargs else 8000,
T
Tingquan Gao 已提交
214 215 216 217 218
            "enable_profile": False
        },
        "PreProcess": {
            "transform_ops": [{
                "ResizeImage": {
T
Tingquan Gao 已提交
219 220
                    "resize_short": kwargs["resize_short"]
                    if "resize_short" in kwargs else 256
T
Tingquan Gao 已提交
221 222 223
                }
            }, {
                "CropImage": {
T
Tingquan Gao 已提交
224 225
                    "size": kwargs["crop_size"]
                    if "crop_size" in kwargs else 224
T
Tingquan Gao 已提交
226 227 228 229 230 231
                }
            }, {
                "NormalizeImage": {
                    "scale": 0.00392157,
                    "mean": [0.485, 0.456, 0.406],
                    "std": [0.229, 0.224, 0.225],
T
Tingquan Gao 已提交
232
                    "order": ''
T
Tingquan Gao 已提交
233 234 235 236 237 238
                }
            }, {
                "ToCHWImage": None
            }]
        },
        "PostProcess": {
T
Tingquan Gao 已提交
239 240 241 242 243
            "main_indicator": "Topk",
            "Topk": {
                "topk": topk,
                "class_id_map_file": imagenet1k_map_path
            }
T
Tingquan Gao 已提交
244 245
        }
    }
T
Tingquan Gao 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    if "save_dir" in kwargs:
        if kwargs["save_dir"] is not None:
            cfg["PostProcess"]["SavePreLabel"] = {
                "save_dir": kwargs["save_dir"]
            }
    if "class_id_map_file" in kwargs:
        if kwargs["class_id_map_file"] is not None:
            cfg["PostProcess"]["Topk"]["class_id_map_file"] = kwargs[
                "class_id_map_file"]

    cfg = config.AttrDict(cfg)
    config.create_attr_dict(cfg)
    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
    parser.add_argument(
        "--use_gpu", type=str, default=True, help="Whether use GPU.")
    parser.add_argument("--gpu_mem", type=int, default=8000, help="")
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        default=False,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument("--cpu_num_threads", type=int, default=1, help="")
    parser.add_argument(
        "--use_tensorrt", type=str2bool, default=False, help="")
    parser.add_argument("--use_fp16", type=str2bool, default=False, help="")
    parser.add_argument(
        "--batch_size", type=int, default=1, help="Batch size. Default by 1.")
    parser.add_argument(
        "--topk",
        type=int,
        default=5,
        help="Return topk score(s) and corresponding results. Default by 5.")
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
305 306 307 308 309 310 311
    parser.add_argument(
        "--resize_short",
        type=int,
        default=256,
        help="Resize according to short size.")
    parser.add_argument(
        "--crop_size", type=int, default=224, help="Centor crop size.")
T
Tingquan Gao 已提交
312 313 314

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
315 316


T
Tingquan Gao 已提交
317
def print_info():
T
Tingquan Gao 已提交
318 319 320
    """Print list of supported models in formatted.
    """
    table = PrettyTable(["Series", "Name"])
T
Tingquan Gao 已提交
321 322 323 324 325
    try:
        sz = os.get_terminal_size()
        width = sz.columns - 30 if sz.columns > 50 else 10
    except OSError:
        width = 100
T
Tingquan Gao 已提交
326 327
    for series in MODEL_SERIES:
        names = textwrap.fill("  ".join(MODEL_SERIES[series]), width=width)
T
Tingquan Gao 已提交
328
        table.add_row([series, names])
T
Tingquan Gao 已提交
329 330 331
    width = len(str(table).split("\n")[0])
    print("{}".format("-" * width))
    print("Models supported by PaddleClas".center(width))
T
Tingquan Gao 已提交
332
    print(table)
T
Tingquan Gao 已提交
333 334
    print("Powered by PaddlePaddle!".rjust(width))
    print("{}".format("-" * width))
T
Tingquan Gao 已提交
335 336 337


def get_model_names():
T
Tingquan Gao 已提交
338 339
    """Get the model names list.
    """
T
Tingquan Gao 已提交
340
    model_names = []
T
Tingquan Gao 已提交
341 342
    for series in MODEL_SERIES:
        model_names += (MODEL_SERIES[series])
T
Tingquan Gao 已提交
343 344 345
    return model_names


T
Tingquan Gao 已提交
346 347
def similar_architectures(name="", names=[], thresh=0.1, topk=10):
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
348 349 350
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
351
        if n.startswith("__"):
T
Tingquan Gao 已提交
352 353 354 355 356 357 358 359 360
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
361
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
362 363 364 365
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
366
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
367
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
368
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
369 370
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
371 372 373 374
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
375 376
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
377
        raise Exception(
T
Tingquan Gao 已提交
378
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
379 380


T
Tingquan Gao 已提交
381
def check_model_file(model_name):
382
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
383 384 385 386 387
    """
    storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                model_name)
    url = BASE_DOWNLOAD_URL.format(model_name)

C
chenziheng 已提交
388
    tar_file_name_list = [
T
Tingquan Gao 已提交
389
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
390
    ]
T
Tingquan Gao 已提交
391 392 393 394 395 396 397
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
        print(f"download {url} to {tmp_path}")
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
398
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
399
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
400 401 402 403 404 405 406 407
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
408
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
409 410
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
411 412 413 414 415
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
416

T
Tingquan Gao 已提交
417
    return storage_directory()
C
chenziheng 已提交
418

T
Tingquan Gao 已提交
419

C
chenziheng 已提交
420
class PaddleClas(object):
T
Tingquan Gao 已提交
421 422 423
    """PaddleClas.
    """

T
Tingquan Gao 已提交
424
    print_info()
C
chenziheng 已提交
425

T
Tingquan Gao 已提交
426 427 428
    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
429 430 431 432
                 use_gpu: bool=True,
                 batch_size: int=1,
                 topk: int=5,
                 **kwargs):
T
Tingquan Gao 已提交
433
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
434

T
Tingquan Gao 已提交
435
        Args:
436 437 438 439 440
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
441 442
        """
        super().__init__()
T
Tingquan Gao 已提交
443 444
        self._config = init_config(model_name, inference_model_dir, use_gpu,
                                   batch_size, topk, **kwargs)
T
Tingquan Gao 已提交
445 446 447 448 449
        self._check_input_model()
        self.cls_predictor = ClsPredictor(self._config)

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
450
        """
T
Tingquan Gao 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464
        return self._config

    def _check_input_model(self):
        """Check input model name or model files.
        """
        candidate_model_names = get_model_names()
        input_model_name = self._config.Global.get("model_name", None)
        inference_model_dir = self._config.Global.get("inference_model_dir",
                                                      None)
        if input_model_name is not None:
            similar_names = similar_architectures(input_model_name,
                                                  candidate_model_names)
            similar_names_str = ", ".join(similar_names)
            if input_model_name not in candidate_model_names:
T
Tingquan Gao 已提交
465
                err = f"{input_model_name} is not provided by PaddleClas. \nMaybe you want: [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                raise InputModelError(err)
            self._config.Global.inference_model_dir = check_model_file(
                input_model_name)
            return
        elif inference_model_dir is not None:
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
            return
        else:
T
Tingquan Gao 已提交
481
            err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
482 483 484
            raise InputModelError(err)
        return

485 486
    def predict(self, input_data: Union[str, np.array],
                print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
487 488
        """Predict input_data.

C
chenziheng 已提交
489
        Args:
G
gaotingquan 已提交
490
            input_data (Union[str, np.array]):
491 492
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
G
gaotingquan 已提交
493
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.
T
Tingquan Gao 已提交
494 495 496 497 498

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
499 500 501
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
G
gaotingquan 已提交
502
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
503
        """
504

T
Tingquan Gao 已提交
505
        if isinstance(input_data, np.ndarray):
G
gaotingquan 已提交
506
            yield self.cls_predictor.predict(input_data)
T
Tingquan Gao 已提交
507
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
508
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
509 510 511 512 513 514 515 516 517 518 519 520
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
                input_data = image_save_path
                warnings.warn(
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)
G
gaotingquan 已提交
521
            topk = self._config.PostProcess.Topk.get('topk', 1)
T
Tingquan Gao 已提交
522 523

            img_list = []
T
Tingquan Gao 已提交
524 525 526 527 528
            img_path_list = []
            cnt = 0
            for idx, img_path in enumerate(image_list):
                img = cv2.imread(img_path)
                if img is None:
T
Tingquan Gao 已提交
529 530 531
                    warnings.warn(
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
532
                    continue
533
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
534 535 536 537 538
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

                if cnt % batch_size == 0 or (idx + 1) == len(image_list):
G
gaotingquan 已提交
539 540
                    preds = self.cls_predictor.predict(img_list)

T
Tingquan Gao 已提交
541
                    if print_pred and preds:
G
gaotingquan 已提交
542
                        for idx, pred in enumerate(preds):
T
Tingquan Gao 已提交
543 544 545
                            pred_str = ", ".join(
                                [f"{k}: {pred[k]}" for k in pred])
                            print(
G
gaotingquan 已提交
546 547
                                f"filename: {img_path_list[idx]}, top-{topk}, {pred_str}"
                            )
T
Tingquan Gao 已提交
548

T
Tingquan Gao 已提交
549
                    img_list = []
T
Tingquan Gao 已提交
550
                    img_path_list = []
T
Tingquan Gao 已提交
551
                    yield preds
C
chenziheng 已提交
552
        else:
T
Tingquan Gao 已提交
553 554 555
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
556 557


T
Tingquan Gao 已提交
558
# for CLI
C
chenziheng 已提交
559
def main():
T
Tingquan Gao 已提交
560 561 562
    """Function API used for commad line.
    """
    cfg = args_cfg()
T
Tingquan Gao 已提交
563 564 565 566 567
    clas_engine = PaddleClas(**cfg)
    res = clas_engine.predict(cfg["infer_imgs"], print_pred=True)
    for _ in res:
        pass
    print("Predict complete!")
T
Tingquan Gao 已提交
568
    return
C
chenziheng 已提交
569 570


T
Tingquan Gao 已提交
571
if __name__ == "__main__":
C
chenziheng 已提交
572
    main()