regnet.py 13.2 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
cuicheng01 已提交
15 16
# Code was based on https://github.com/facebookresearch/pycls

C
cuicheng01 已提交
17 18 19 20 21 22 23 24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
25 26 27
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
C
cuicheng01 已提交
28 29 30
from paddle.nn.initializer import Uniform
import math

C
cuicheng01 已提交
31 32
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

littletomatodonkey's avatar
littletomatodonkey 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46
MODEL_URLS = {
    "RegNetX_200MF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams",
    "RegNetX_4GF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams",
    "RegNetX_32GF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams",
    "RegNetY_200MF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_200MF_pretrained.pdparams",
    "RegNetY_4GF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_4GF_pretrained.pdparams",
    "RegNetY_32GF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_32GF_pretrained.pdparams",
}
C
cuicheng01 已提交
47 48

__all__ = list(MODEL_URLS.keys())
C
cuicheng01 已提交
49

50

C
cuicheng01 已提交
51 52 53 54 55 56 57 58 59
def quantize_float(f, q):
    """Converts a float to closest non-zero int divisible by q."""
    return int(round(f / q) * q)


def adjust_ws_gs_comp(ws, bms, gs):
    """Adjusts the compatibility of widths and groups."""
    ws_bot = [int(w * b) for w, b in zip(ws, bms)]
    gs = [min(g, w_bot) for g, w_bot in zip(gs, ws_bot)]
60
    ws_bot = [quantize_float(w_bot, g) for w_bot, g in zip(ws_bot, gs)]
C
cuicheng01 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    ws = [int(w_bot / b) for w_bot, b in zip(ws_bot, bms)]
    return ws, gs


def get_stages_from_blocks(ws, rs):
    """Gets ws/ds of network at each stage from per block values."""
    ts = [
        w != wp or r != rp
        for w, wp, r, rp in zip(ws + [0], [0] + ws, rs + [0], [0] + rs)
    ]
    s_ws = [w for w, t in zip(ws, ts[:-1]) if t]
    s_ds = np.diff([d for d, t in zip(range(len(ts)), ts) if t]).tolist()
    return s_ws, s_ds


def generate_regnet(w_a, w_0, w_m, d, q=8):
    """Generates per block ws from RegNet parameters."""
    assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0
    ws_cont = np.arange(d) * w_a + w_0
    ks = np.round(np.log(ws_cont / w_0) / np.log(w_m))
    ws = w_0 * np.power(w_m, ks)
    ws = np.round(np.divide(ws, q)) * q
    num_stages, max_stage = len(np.unique(ws)), ks.max() + 1
    ws, ws_cont = ws.astype(int).tolist(), ws_cont.tolist()
    return ws, num_stages, max_stage, ws_cont


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 padding=0,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

100
        self._conv = Conv2D(
C
cuicheng01 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + ".conv2d.output.1.w_0"),
            bias_attr=ParamAttr(name=name + ".conv2d.output.1.b_0"))
        bn_name = name + "_bn"
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + ".output.1.w_0"),
            bias_attr=ParamAttr(bn_name + ".output.1.b_0"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")
117

C
cuicheng01 已提交
118 119 120 121
    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
122 123


C
cuicheng01 已提交
124 125 126 127 128
class BottleneckBlock(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
129 130
                 bm,
                 gw,
C
cuicheng01 已提交
131
                 se_on,
132
                 se_r,
C
cuicheng01 已提交
133 134 135 136 137 138 139 140
                 shortcut=True,
                 name=None):
        super(BottleneckBlock, self).__init__()

        # Compute the bottleneck width
        w_b = int(round(num_filters * bm))
        # Compute the number of groups
        num_gs = w_b // gw
141
        self.se_on = se_on
C
cuicheng01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=w_b,
            filter_size=1,
            padding=0,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=w_b,
            num_filters=w_b,
            filter_size=3,
            stride=stride,
            padding=1,
            groups=num_gs,
            act="relu",
            name=name + "_branch2b")
        if se_on:
            w_se = int(round(num_channels * se_r))
            self.se_block = SELayer(
                num_channels=w_b,
                num_filters=w_b,
C
cuicheng01 已提交
163
                reduction_ratio=w_se,
C
cuicheng01 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
                name=name + "_branch2se")
        self.conv2 = ConvBNLayer(
            num_channels=w_b,
            num_filters=num_filters,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        if self.se_on:
            conv1 = self.se_block(conv1)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

194 195
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
C
cuicheng01 已提交
196 197
        return y

198

C
cuicheng01 已提交
199 200 201 202
class SELayer(nn.Layer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

203
        self.pool2d_gap = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
            bias_attr=ParamAttr(name=name + "_sqz_offset"))

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
            bias_attr=ParamAttr(name=name + "_exc_offset"))

    def forward(self, input):
        pool = self.pool2d_gap(input)
        pool = paddle.reshape(pool, shape=[-1, self._num_channels])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.reshape(
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out
235

C
cuicheng01 已提交
236 237

class RegNet(nn.Layer):
238 239 240 241 242 243 244 245 246
    def __init__(self,
                 w_a,
                 w_0,
                 w_m,
                 d,
                 group_w,
                 bot_mul,
                 q=8,
                 se_on=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
247
                 class_num=1000):
C
cuicheng01 已提交
248
        super(RegNet, self).__init__()
249

C
cuicheng01 已提交
250
        # Generate RegNet ws per block
251
        b_ws, num_s, max_s, ws_cont = generate_regnet(w_a, w_0, w_m, d, q)
C
cuicheng01 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        # Convert to per stage format
        ws, ds = get_stages_from_blocks(b_ws, b_ws)
        # Generate group widths and bot muls
        gws = [group_w for _ in range(num_s)]
        bms = [bot_mul for _ in range(num_s)]
        # Adjust the compatibility of ws and gws
        ws, gws = adjust_ws_gs_comp(ws, bms, gws)
        # Use the same stride for each stage
        ss = [2 for _ in range(num_s)]
        # Use SE for RegNetY
        se_r = 0.25
        # Construct the model
        # Group params by stage
        stage_params = list(zip(ds, ws, ss, bms, gws))
        # Construct the stem
        stem_type = "simple_stem_in"
        stem_w = 32
        block_type = "res_bottleneck_block"

        self.conv = ConvBNLayer(
            num_channels=3,
            num_filters=stem_w,
            filter_size=3,
            stride=2,
            padding=1,
            act="relu",
            name="stem_conv")

        self.block_list = []
        for block, (d, w_out, stride, bm, gw) in enumerate(stage_params):
            shortcut = False
            for i in range(d):
                num_channels = stem_w if block == i == 0 else in_channels
                # Stride apply to the first block of the stage
                b_stride = stride if i == 0 else 1
287 288
                conv_name = "s" + str(block + 1) + "_b" + str(i +
                                                              1)  # chr(97 + i)
C
cuicheng01 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
                bottleneck_block = self.add_sublayer(
                    conv_name,
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=w_out,
                        stride=b_stride,
                        bm=bm,
                        gw=gw,
                        se_on=se_on,
                        se_r=se_r,
                        shortcut=shortcut,
                        name=conv_name))
                in_channels = w_out
                self.block_list.append(bottleneck_block)
                shortcut = True

305
        self.pool2d_avg = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
306 307 308 309 310 311 312

        self.pool2d_avg_channels = w_out

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
littletomatodonkey's avatar
littletomatodonkey 已提交
313
            class_num,
C
cuicheng01 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv(inputs)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y

littletomatodonkey's avatar
littletomatodonkey 已提交
327

C
cuicheng01 已提交
328 329 330 331 332 333 334 335 336 337 338
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )
littletomatodonkey's avatar
littletomatodonkey 已提交
339 340


C
cuicheng01 已提交
341
def RegNetX_200MF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
342
    model = RegNet(
littletomatodonkey's avatar
littletomatodonkey 已提交
343 344 345 346 347 348 349 350 351 352
        w_a=36.44,
        w_0=24,
        w_m=2.49,
        d=13,
        group_w=8,
        bot_mul=1.0,
        q=8,
        **kwargs)
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_200MF"], use_ssld=use_ssld)
C
cuicheng01 已提交
353 354 355
    return model


C
cuicheng01 已提交
356
def RegNetX_4GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
357
    model = RegNet(
358 359 360 361 362 363 364
        w_a=38.65,
        w_0=96,
        w_m=2.43,
        d=23,
        group_w=40,
        bot_mul=1.0,
        q=8,
C
cuicheng01 已提交
365
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
366 367
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_4GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
368 369 370
    return model


C
cuicheng01 已提交
371
def RegNetX_32GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
372
    model = RegNet(
373 374 375 376 377 378 379
        w_a=69.86,
        w_0=320,
        w_m=2.0,
        d=23,
        group_w=168,
        bot_mul=1.0,
        q=8,
C
cuicheng01 已提交
380
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
381 382
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
383 384 385
    return model


C
cuicheng01 已提交
386
def RegNetY_200MF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
387 388 389 390 391 392 393 394 395
    model = RegNet(
        w_a=36.44,
        w_0=24,
        w_m=2.49,
        d=13,
        group_w=8,
        bot_mul=1.0,
        q=8,
        se_on=True,
C
cuicheng01 已提交
396
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
397 398
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
399 400 401
    return model


C
cuicheng01 已提交
402
def RegNetY_4GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
403 404 405 406 407 408 409 410 411
    model = RegNet(
        w_a=31.41,
        w_0=96,
        w_m=2.24,
        d=22,
        group_w=64,
        bot_mul=1.0,
        q=8,
        se_on=True,
C
cuicheng01 已提交
412
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
413 414
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
415 416 417
    return model


C
cuicheng01 已提交
418
def RegNetY_32GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
419 420 421 422 423 424 425 426 427
    model = RegNet(
        w_a=115.89,
        w_0=232,
        w_m=2.53,
        d=20,
        group_w=232,
        bot_mul=1.0,
        q=8,
        se_on=True,
C
cuicheng01 已提交
428
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
429 430
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
431
    return model