regnet.py 13.1 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
23 24 25
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
C
cuicheng01 已提交
26 27 28
from paddle.nn.initializer import Uniform
import math

C
cuicheng01 已提交
29 30
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

littletomatodonkey's avatar
littletomatodonkey 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44
MODEL_URLS = {
    "RegNetX_200MF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams",
    "RegNetX_4GF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams",
    "RegNetX_32GF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams",
    "RegNetY_200MF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_200MF_pretrained.pdparams",
    "RegNetY_4GF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_4GF_pretrained.pdparams",
    "RegNetY_32GF":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_32GF_pretrained.pdparams",
}
C
cuicheng01 已提交
45 46

__all__ = list(MODEL_URLS.keys())
C
cuicheng01 已提交
47

48

C
cuicheng01 已提交
49 50 51 52 53 54 55 56 57
def quantize_float(f, q):
    """Converts a float to closest non-zero int divisible by q."""
    return int(round(f / q) * q)


def adjust_ws_gs_comp(ws, bms, gs):
    """Adjusts the compatibility of widths and groups."""
    ws_bot = [int(w * b) for w, b in zip(ws, bms)]
    gs = [min(g, w_bot) for g, w_bot in zip(gs, ws_bot)]
58
    ws_bot = [quantize_float(w_bot, g) for w_bot, g in zip(ws_bot, gs)]
C
cuicheng01 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    ws = [int(w_bot / b) for w_bot, b in zip(ws_bot, bms)]
    return ws, gs


def get_stages_from_blocks(ws, rs):
    """Gets ws/ds of network at each stage from per block values."""
    ts = [
        w != wp or r != rp
        for w, wp, r, rp in zip(ws + [0], [0] + ws, rs + [0], [0] + rs)
    ]
    s_ws = [w for w, t in zip(ws, ts[:-1]) if t]
    s_ds = np.diff([d for d, t in zip(range(len(ts)), ts) if t]).tolist()
    return s_ws, s_ds


def generate_regnet(w_a, w_0, w_m, d, q=8):
    """Generates per block ws from RegNet parameters."""
    assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0
    ws_cont = np.arange(d) * w_a + w_0
    ks = np.round(np.log(ws_cont / w_0) / np.log(w_m))
    ws = w_0 * np.power(w_m, ks)
    ws = np.round(np.divide(ws, q)) * q
    num_stages, max_stage = len(np.unique(ws)), ks.max() + 1
    ws, ws_cont = ws.astype(int).tolist(), ws_cont.tolist()
    return ws, num_stages, max_stage, ws_cont


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 padding=0,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

98
        self._conv = Conv2D(
C
cuicheng01 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + ".conv2d.output.1.w_0"),
            bias_attr=ParamAttr(name=name + ".conv2d.output.1.b_0"))
        bn_name = name + "_bn"
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + ".output.1.w_0"),
            bias_attr=ParamAttr(bn_name + ".output.1.b_0"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")
115

C
cuicheng01 已提交
116 117 118 119
    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
120 121


C
cuicheng01 已提交
122 123 124 125 126
class BottleneckBlock(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
127 128
                 bm,
                 gw,
C
cuicheng01 已提交
129
                 se_on,
130
                 se_r,
C
cuicheng01 已提交
131 132 133 134 135 136 137 138
                 shortcut=True,
                 name=None):
        super(BottleneckBlock, self).__init__()

        # Compute the bottleneck width
        w_b = int(round(num_filters * bm))
        # Compute the number of groups
        num_gs = w_b // gw
139
        self.se_on = se_on
C
cuicheng01 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=w_b,
            filter_size=1,
            padding=0,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=w_b,
            num_filters=w_b,
            filter_size=3,
            stride=stride,
            padding=1,
            groups=num_gs,
            act="relu",
            name=name + "_branch2b")
        if se_on:
            w_se = int(round(num_channels * se_r))
            self.se_block = SELayer(
                num_channels=w_b,
                num_filters=w_b,
C
cuicheng01 已提交
161
                reduction_ratio=w_se,
C
cuicheng01 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                name=name + "_branch2se")
        self.conv2 = ConvBNLayer(
            num_channels=w_b,
            num_filters=num_filters,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        if self.se_on:
            conv1 = self.se_block(conv1)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

192 193
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
C
cuicheng01 已提交
194 195
        return y

196

C
cuicheng01 已提交
197 198 199 200
class SELayer(nn.Layer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

201
        self.pool2d_gap = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
            bias_attr=ParamAttr(name=name + "_sqz_offset"))

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
            bias_attr=ParamAttr(name=name + "_exc_offset"))

    def forward(self, input):
        pool = self.pool2d_gap(input)
        pool = paddle.reshape(pool, shape=[-1, self._num_channels])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.reshape(
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out
233

C
cuicheng01 已提交
234 235

class RegNet(nn.Layer):
236 237 238 239 240 241 242 243 244
    def __init__(self,
                 w_a,
                 w_0,
                 w_m,
                 d,
                 group_w,
                 bot_mul,
                 q=8,
                 se_on=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
245
                 class_num=1000):
C
cuicheng01 已提交
246
        super(RegNet, self).__init__()
247

C
cuicheng01 已提交
248
        # Generate RegNet ws per block
249
        b_ws, num_s, max_s, ws_cont = generate_regnet(w_a, w_0, w_m, d, q)
C
cuicheng01 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        # Convert to per stage format
        ws, ds = get_stages_from_blocks(b_ws, b_ws)
        # Generate group widths and bot muls
        gws = [group_w for _ in range(num_s)]
        bms = [bot_mul for _ in range(num_s)]
        # Adjust the compatibility of ws and gws
        ws, gws = adjust_ws_gs_comp(ws, bms, gws)
        # Use the same stride for each stage
        ss = [2 for _ in range(num_s)]
        # Use SE for RegNetY
        se_r = 0.25
        # Construct the model
        # Group params by stage
        stage_params = list(zip(ds, ws, ss, bms, gws))
        # Construct the stem
        stem_type = "simple_stem_in"
        stem_w = 32
        block_type = "res_bottleneck_block"

        self.conv = ConvBNLayer(
            num_channels=3,
            num_filters=stem_w,
            filter_size=3,
            stride=2,
            padding=1,
            act="relu",
            name="stem_conv")

        self.block_list = []
        for block, (d, w_out, stride, bm, gw) in enumerate(stage_params):
            shortcut = False
            for i in range(d):
                num_channels = stem_w if block == i == 0 else in_channels
                # Stride apply to the first block of the stage
                b_stride = stride if i == 0 else 1
285 286
                conv_name = "s" + str(block + 1) + "_b" + str(i +
                                                              1)  # chr(97 + i)
C
cuicheng01 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
                bottleneck_block = self.add_sublayer(
                    conv_name,
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=w_out,
                        stride=b_stride,
                        bm=bm,
                        gw=gw,
                        se_on=se_on,
                        se_r=se_r,
                        shortcut=shortcut,
                        name=conv_name))
                in_channels = w_out
                self.block_list.append(bottleneck_block)
                shortcut = True

303
        self.pool2d_avg = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
304 305 306 307 308 309 310

        self.pool2d_avg_channels = w_out

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
littletomatodonkey's avatar
littletomatodonkey 已提交
311
            class_num,
C
cuicheng01 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv(inputs)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y

littletomatodonkey's avatar
littletomatodonkey 已提交
325

C
cuicheng01 已提交
326 327 328 329 330 331 332 333 334 335 336
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )
littletomatodonkey's avatar
littletomatodonkey 已提交
337 338


C
cuicheng01 已提交
339
def RegNetX_200MF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
340
    model = RegNet(
littletomatodonkey's avatar
littletomatodonkey 已提交
341 342 343 344 345 346 347 348 349 350
        w_a=36.44,
        w_0=24,
        w_m=2.49,
        d=13,
        group_w=8,
        bot_mul=1.0,
        q=8,
        **kwargs)
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_200MF"], use_ssld=use_ssld)
C
cuicheng01 已提交
351 352 353
    return model


C
cuicheng01 已提交
354
def RegNetX_4GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
355
    model = RegNet(
356 357 358 359 360 361 362
        w_a=38.65,
        w_0=96,
        w_m=2.43,
        d=23,
        group_w=40,
        bot_mul=1.0,
        q=8,
C
cuicheng01 已提交
363
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
364 365
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_4GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
366 367 368
    return model


C
cuicheng01 已提交
369
def RegNetX_32GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
370
    model = RegNet(
371 372 373 374 375 376 377
        w_a=69.86,
        w_0=320,
        w_m=2.0,
        d=23,
        group_w=168,
        bot_mul=1.0,
        q=8,
C
cuicheng01 已提交
378
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
379 380
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
381 382 383
    return model


C
cuicheng01 已提交
384
def RegNetY_200MF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
385 386 387 388 389 390 391 392 393
    model = RegNet(
        w_a=36.44,
        w_0=24,
        w_m=2.49,
        d=13,
        group_w=8,
        bot_mul=1.0,
        q=8,
        se_on=True,
C
cuicheng01 已提交
394
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
395 396
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
397 398 399
    return model


C
cuicheng01 已提交
400
def RegNetY_4GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
401 402 403 404 405 406 407 408 409
    model = RegNet(
        w_a=31.41,
        w_0=96,
        w_m=2.24,
        d=22,
        group_w=64,
        bot_mul=1.0,
        q=8,
        se_on=True,
C
cuicheng01 已提交
410
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
411 412
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
413 414 415
    return model


C
cuicheng01 已提交
416
def RegNetY_32GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
417 418 419 420 421 422 423 424 425
    model = RegNet(
        w_a=115.89,
        w_0=232,
        w_m=2.53,
        d=20,
        group_w=232,
        bot_mul=1.0,
        q=8,
        se_on=True,
C
cuicheng01 已提交
426
        **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
427 428
    _load_pretrained(
        pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
429
    return model