regnet.py 11.1 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
23 24 25
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
C
cuicheng01 已提交
26 27 28 29 30 31 32 33
from paddle.nn.initializer import Uniform
import math

__all__ = [
    "RegNetX_200MF", "RegNetX_4GF", "RegNetX_32GF", "RegNetY_200MF",
    "RegNetY_4GF", "RegNetY_32GF"
]

34

C
cuicheng01 已提交
35 36 37 38 39 40 41 42 43
def quantize_float(f, q):
    """Converts a float to closest non-zero int divisible by q."""
    return int(round(f / q) * q)


def adjust_ws_gs_comp(ws, bms, gs):
    """Adjusts the compatibility of widths and groups."""
    ws_bot = [int(w * b) for w, b in zip(ws, bms)]
    gs = [min(g, w_bot) for g, w_bot in zip(gs, ws_bot)]
44
    ws_bot = [quantize_float(w_bot, g) for w_bot, g in zip(ws_bot, gs)]
C
cuicheng01 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    ws = [int(w_bot / b) for w_bot, b in zip(ws_bot, bms)]
    return ws, gs


def get_stages_from_blocks(ws, rs):
    """Gets ws/ds of network at each stage from per block values."""
    ts = [
        w != wp or r != rp
        for w, wp, r, rp in zip(ws + [0], [0] + ws, rs + [0], [0] + rs)
    ]
    s_ws = [w for w, t in zip(ws, ts[:-1]) if t]
    s_ds = np.diff([d for d, t in zip(range(len(ts)), ts) if t]).tolist()
    return s_ws, s_ds


def generate_regnet(w_a, w_0, w_m, d, q=8):
    """Generates per block ws from RegNet parameters."""
    assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0
    ws_cont = np.arange(d) * w_a + w_0
    ks = np.round(np.log(ws_cont / w_0) / np.log(w_m))
    ws = w_0 * np.power(w_m, ks)
    ws = np.round(np.divide(ws, q)) * q
    num_stages, max_stage = len(np.unique(ws)), ks.max() + 1
    ws, ws_cont = ws.astype(int).tolist(), ws_cont.tolist()
    return ws, num_stages, max_stage, ws_cont


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 padding=0,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

84
        self._conv = Conv2D(
C
cuicheng01 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + ".conv2d.output.1.w_0"),
            bias_attr=ParamAttr(name=name + ".conv2d.output.1.b_0"))
        bn_name = name + "_bn"
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + ".output.1.w_0"),
            bias_attr=ParamAttr(bn_name + ".output.1.b_0"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")
101

C
cuicheng01 已提交
102 103 104 105
    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
106 107


C
cuicheng01 已提交
108 109 110 111 112
class BottleneckBlock(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
113 114
                 bm,
                 gw,
C
cuicheng01 已提交
115
                 se_on,
116
                 se_r,
C
cuicheng01 已提交
117 118 119 120 121 122 123 124
                 shortcut=True,
                 name=None):
        super(BottleneckBlock, self).__init__()

        # Compute the bottleneck width
        w_b = int(round(num_filters * bm))
        # Compute the number of groups
        num_gs = w_b // gw
125
        self.se_on = se_on
C
cuicheng01 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=w_b,
            filter_size=1,
            padding=0,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=w_b,
            num_filters=w_b,
            filter_size=3,
            stride=stride,
            padding=1,
            groups=num_gs,
            act="relu",
            name=name + "_branch2b")
        if se_on:
            w_se = int(round(num_channels * se_r))
            self.se_block = SELayer(
                num_channels=w_b,
                num_filters=w_b,
C
cuicheng01 已提交
147
                reduction_ratio=w_se,
C
cuicheng01 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
                name=name + "_branch2se")
        self.conv2 = ConvBNLayer(
            num_channels=w_b,
            num_filters=num_filters,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        if self.se_on:
            conv1 = self.se_block(conv1)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

178 179
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
C
cuicheng01 已提交
180 181
        return y

182

C
cuicheng01 已提交
183 184 185 186
class SELayer(nn.Layer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

187
        self.pool2d_gap = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
            bias_attr=ParamAttr(name=name + "_sqz_offset"))

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
            bias_attr=ParamAttr(name=name + "_exc_offset"))

    def forward(self, input):
        pool = self.pool2d_gap(input)
        pool = paddle.reshape(pool, shape=[-1, self._num_channels])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.reshape(
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out
219

C
cuicheng01 已提交
220 221

class RegNet(nn.Layer):
222 223 224 225 226 227 228 229 230 231
    def __init__(self,
                 w_a,
                 w_0,
                 w_m,
                 d,
                 group_w,
                 bot_mul,
                 q=8,
                 se_on=False,
                 class_dim=1000):
C
cuicheng01 已提交
232
        super(RegNet, self).__init__()
233

C
cuicheng01 已提交
234
        # Generate RegNet ws per block
235
        b_ws, num_s, max_s, ws_cont = generate_regnet(w_a, w_0, w_m, d, q)
C
cuicheng01 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        # Convert to per stage format
        ws, ds = get_stages_from_blocks(b_ws, b_ws)
        # Generate group widths and bot muls
        gws = [group_w for _ in range(num_s)]
        bms = [bot_mul for _ in range(num_s)]
        # Adjust the compatibility of ws and gws
        ws, gws = adjust_ws_gs_comp(ws, bms, gws)
        # Use the same stride for each stage
        ss = [2 for _ in range(num_s)]
        # Use SE for RegNetY
        se_r = 0.25
        # Construct the model
        # Group params by stage
        stage_params = list(zip(ds, ws, ss, bms, gws))
        # Construct the stem
        stem_type = "simple_stem_in"
        stem_w = 32
        block_type = "res_bottleneck_block"

        self.conv = ConvBNLayer(
            num_channels=3,
            num_filters=stem_w,
            filter_size=3,
            stride=2,
            padding=1,
            act="relu",
            name="stem_conv")

        self.block_list = []
        for block, (d, w_out, stride, bm, gw) in enumerate(stage_params):
            shortcut = False
            for i in range(d):
                num_channels = stem_w if block == i == 0 else in_channels
                # Stride apply to the first block of the stage
                b_stride = stride if i == 0 else 1
271 272
                conv_name = "s" + str(block + 1) + "_b" + str(i +
                                                              1)  # chr(97 + i)
C
cuicheng01 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                bottleneck_block = self.add_sublayer(
                    conv_name,
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=w_out,
                        stride=b_stride,
                        bm=bm,
                        gw=gw,
                        se_on=se_on,
                        se_r=se_r,
                        shortcut=shortcut,
                        name=conv_name))
                in_channels = w_out
                self.block_list.append(bottleneck_block)
                shortcut = True

289
        self.pool2d_avg = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

        self.pool2d_avg_channels = w_out

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv(inputs)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y

311

C
cuicheng01 已提交
312 313 314 315 316 317 318 319
def RegNetX_200MF(**args):
    model = RegNet(
        w_a=36.44, w_0=24, w_m=2.49, d=13, group_w=8, bot_mul=1.0, q=8, **args)
    return model


def RegNetX_4GF(**args):
    model = RegNet(
320 321 322 323 324 325 326 327
        w_a=38.65,
        w_0=96,
        w_m=2.43,
        d=23,
        group_w=40,
        bot_mul=1.0,
        q=8,
        **args)
C
cuicheng01 已提交
328 329 330 331 332
    return model


def RegNetX_32GF(**args):
    model = RegNet(
333 334 335 336 337 338 339 340
        w_a=69.86,
        w_0=320,
        w_m=2.0,
        d=23,
        group_w=168,
        bot_mul=1.0,
        q=8,
        **args)
C
cuicheng01 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    return model


def RegNetY_200MF(**args):
    model = RegNet(
        w_a=36.44,
        w_0=24,
        w_m=2.49,
        d=13,
        group_w=8,
        bot_mul=1.0,
        q=8,
        se_on=True,
        **args)
    return model


def RegNetY_4GF(**args):
    model = RegNet(
        w_a=31.41,
        w_0=96,
        w_m=2.24,
        d=22,
        group_w=64,
        bot_mul=1.0,
        q=8,
        se_on=True,
        **args)
    return model


def RegNetY_32GF(**args):
    model = RegNet(
        w_a=115.89,
        w_0=232,
        w_m=2.53,
        d=20,
        group_w=232,
        bot_mul=1.0,
        q=8,
        se_on=True,
        **args)
    return model