regnet.py 13.0 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
23 24 25
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
C
cuicheng01 已提交
26 27 28
from paddle.nn.initializer import Uniform
import math

C
cuicheng01 已提交
29 30 31 32 33 34 35 36 37 38 39
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {"RegNetX_200MF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams", 
              "RegNetX_4GF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams", 
              "RegNetX_32GF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams", 
              "RegNetY_200MF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_200MF_pretrained.pdparams", 
              "RegNetY_4GF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_4GF_pretrained.pdparams", 
              "RegNetY_32GF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_32GF_pretrained.pdparams", 
             }

__all__ = list(MODEL_URLS.keys())
C
cuicheng01 已提交
40

41

C
cuicheng01 已提交
42 43 44 45 46 47 48 49 50
def quantize_float(f, q):
    """Converts a float to closest non-zero int divisible by q."""
    return int(round(f / q) * q)


def adjust_ws_gs_comp(ws, bms, gs):
    """Adjusts the compatibility of widths and groups."""
    ws_bot = [int(w * b) for w, b in zip(ws, bms)]
    gs = [min(g, w_bot) for g, w_bot in zip(gs, ws_bot)]
51
    ws_bot = [quantize_float(w_bot, g) for w_bot, g in zip(ws_bot, gs)]
C
cuicheng01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    ws = [int(w_bot / b) for w_bot, b in zip(ws_bot, bms)]
    return ws, gs


def get_stages_from_blocks(ws, rs):
    """Gets ws/ds of network at each stage from per block values."""
    ts = [
        w != wp or r != rp
        for w, wp, r, rp in zip(ws + [0], [0] + ws, rs + [0], [0] + rs)
    ]
    s_ws = [w for w, t in zip(ws, ts[:-1]) if t]
    s_ds = np.diff([d for d, t in zip(range(len(ts)), ts) if t]).tolist()
    return s_ws, s_ds


def generate_regnet(w_a, w_0, w_m, d, q=8):
    """Generates per block ws from RegNet parameters."""
    assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0
    ws_cont = np.arange(d) * w_a + w_0
    ks = np.round(np.log(ws_cont / w_0) / np.log(w_m))
    ws = w_0 * np.power(w_m, ks)
    ws = np.round(np.divide(ws, q)) * q
    num_stages, max_stage = len(np.unique(ws)), ks.max() + 1
    ws, ws_cont = ws.astype(int).tolist(), ws_cont.tolist()
    return ws, num_stages, max_stage, ws_cont


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 padding=0,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

91
        self._conv = Conv2D(
C
cuicheng01 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + ".conv2d.output.1.w_0"),
            bias_attr=ParamAttr(name=name + ".conv2d.output.1.b_0"))
        bn_name = name + "_bn"
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + ".output.1.w_0"),
            bias_attr=ParamAttr(bn_name + ".output.1.b_0"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")
108

C
cuicheng01 已提交
109 110 111 112
    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
113 114


C
cuicheng01 已提交
115 116 117 118 119
class BottleneckBlock(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
120 121
                 bm,
                 gw,
C
cuicheng01 已提交
122
                 se_on,
123
                 se_r,
C
cuicheng01 已提交
124 125 126 127 128 129 130 131
                 shortcut=True,
                 name=None):
        super(BottleneckBlock, self).__init__()

        # Compute the bottleneck width
        w_b = int(round(num_filters * bm))
        # Compute the number of groups
        num_gs = w_b // gw
132
        self.se_on = se_on
C
cuicheng01 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=w_b,
            filter_size=1,
            padding=0,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=w_b,
            num_filters=w_b,
            filter_size=3,
            stride=stride,
            padding=1,
            groups=num_gs,
            act="relu",
            name=name + "_branch2b")
        if se_on:
            w_se = int(round(num_channels * se_r))
            self.se_block = SELayer(
                num_channels=w_b,
                num_filters=w_b,
C
cuicheng01 已提交
154
                reduction_ratio=w_se,
C
cuicheng01 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
                name=name + "_branch2se")
        self.conv2 = ConvBNLayer(
            num_channels=w_b,
            num_filters=num_filters,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        if self.se_on:
            conv1 = self.se_block(conv1)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

185 186
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
C
cuicheng01 已提交
187 188
        return y

189

C
cuicheng01 已提交
190 191 192 193
class SELayer(nn.Layer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

194
        self.pool2d_gap = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
            bias_attr=ParamAttr(name=name + "_sqz_offset"))

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
            bias_attr=ParamAttr(name=name + "_exc_offset"))

    def forward(self, input):
        pool = self.pool2d_gap(input)
        pool = paddle.reshape(pool, shape=[-1, self._num_channels])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.reshape(
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out
226

C
cuicheng01 已提交
227 228

class RegNet(nn.Layer):
229 230 231 232 233 234 235 236 237 238
    def __init__(self,
                 w_a,
                 w_0,
                 w_m,
                 d,
                 group_w,
                 bot_mul,
                 q=8,
                 se_on=False,
                 class_dim=1000):
C
cuicheng01 已提交
239
        super(RegNet, self).__init__()
240

C
cuicheng01 已提交
241
        # Generate RegNet ws per block
242
        b_ws, num_s, max_s, ws_cont = generate_regnet(w_a, w_0, w_m, d, q)
C
cuicheng01 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        # Convert to per stage format
        ws, ds = get_stages_from_blocks(b_ws, b_ws)
        # Generate group widths and bot muls
        gws = [group_w for _ in range(num_s)]
        bms = [bot_mul for _ in range(num_s)]
        # Adjust the compatibility of ws and gws
        ws, gws = adjust_ws_gs_comp(ws, bms, gws)
        # Use the same stride for each stage
        ss = [2 for _ in range(num_s)]
        # Use SE for RegNetY
        se_r = 0.25
        # Construct the model
        # Group params by stage
        stage_params = list(zip(ds, ws, ss, bms, gws))
        # Construct the stem
        stem_type = "simple_stem_in"
        stem_w = 32
        block_type = "res_bottleneck_block"

        self.conv = ConvBNLayer(
            num_channels=3,
            num_filters=stem_w,
            filter_size=3,
            stride=2,
            padding=1,
            act="relu",
            name="stem_conv")

        self.block_list = []
        for block, (d, w_out, stride, bm, gw) in enumerate(stage_params):
            shortcut = False
            for i in range(d):
                num_channels = stem_w if block == i == 0 else in_channels
                # Stride apply to the first block of the stage
                b_stride = stride if i == 0 else 1
278 279
                conv_name = "s" + str(block + 1) + "_b" + str(i +
                                                              1)  # chr(97 + i)
C
cuicheng01 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
                bottleneck_block = self.add_sublayer(
                    conv_name,
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=w_out,
                        stride=b_stride,
                        bm=bm,
                        gw=gw,
                        se_on=se_on,
                        se_r=se_r,
                        shortcut=shortcut,
                        name=conv_name))
                in_channels = w_out
                self.block_list.append(bottleneck_block)
                shortcut = True

296
        self.pool2d_avg = AdaptiveAvgPool2D(1)
C
cuicheng01 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

        self.pool2d_avg_channels = w_out

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv(inputs)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y

C
cuicheng01 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )
        
    
def RegNetX_200MF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
333
    model = RegNet(
C
cuicheng01 已提交
334 335
        w_a=36.44, w_0=24, w_m=2.49, d=13, group_w=8, bot_mul=1.0, q=8, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["RegNetX_200MF"], use_ssld=use_ssld)
C
cuicheng01 已提交
336 337 338
    return model


C
cuicheng01 已提交
339
def RegNetX_4GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
340
    model = RegNet(
341 342 343 344 345 346 347
        w_a=38.65,
        w_0=96,
        w_m=2.43,
        d=23,
        group_w=40,
        bot_mul=1.0,
        q=8,
C
cuicheng01 已提交
348 349
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["RegNetX_4GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
350 351 352
    return model


C
cuicheng01 已提交
353
def RegNetX_32GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
354
    model = RegNet(
355 356 357 358 359 360 361
        w_a=69.86,
        w_0=320,
        w_m=2.0,
        d=23,
        group_w=168,
        bot_mul=1.0,
        q=8,
C
cuicheng01 已提交
362 363
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
364 365 366
    return model


C
cuicheng01 已提交
367
def RegNetY_200MF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
368 369 370 371 372 373 374 375 376
    model = RegNet(
        w_a=36.44,
        w_0=24,
        w_m=2.49,
        d=13,
        group_w=8,
        bot_mul=1.0,
        q=8,
        se_on=True,
C
cuicheng01 已提交
377 378
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
379 380 381
    return model


C
cuicheng01 已提交
382
def RegNetY_4GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
383 384 385 386 387 388 389 390 391
    model = RegNet(
        w_a=31.41,
        w_0=96,
        w_m=2.24,
        d=22,
        group_w=64,
        bot_mul=1.0,
        q=8,
        se_on=True,
C
cuicheng01 已提交
392 393
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
394 395 396
    return model


C
cuicheng01 已提交
397
def RegNetY_32GF(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
398 399 400 401 402 403 404 405 406
    model = RegNet(
        w_a=115.89,
        w_0=232,
        w_m=2.53,
        d=20,
        group_w=232,
        bot_mul=1.0,
        q=8,
        se_on=True,
C
cuicheng01 已提交
407 408
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld)
C
cuicheng01 已提交
409
    return model