__init__.py 10.3 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
W
WuHaobo 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
dbg  
weishengyu 已提交
14

G
gaotingquan 已提交
15
import inspect
F
Felix 已提交
16
import copy
17
import random
G
gaotingquan 已提交
18 19
import platform

F
Felix 已提交
20 21
import paddle
import numpy as np
22 23
import paddle.distributed as dist
from functools import partial
F
Felix 已提交
24 25 26
from paddle.io import DistributedBatchSampler, BatchSampler, DataLoader
from ppcls.utils import logger

W
dbg  
weishengyu 已提交
27
from ppcls.data import dataloader
F
Felix 已提交
28
# dataset
W
dbg  
weishengyu 已提交
29 30 31 32
from ppcls.data.dataloader.imagenet_dataset import ImageNetDataset
from ppcls.data.dataloader.multilabel_dataset import MultiLabelDataset
from ppcls.data.dataloader.common_dataset import create_operators
from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
F
Felix 已提交
33
from ppcls.data.dataloader.logo_dataset import LogoDataset
B
Bin Lu 已提交
34
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
W
dbg  
weishengyu 已提交
35
from ppcls.data.dataloader.mix_dataset import MixDataset
S
sibo2rr 已提交
36
from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
T
tianyi1997 已提交
37
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17, DukeMTMC
D
dongshuilong 已提交
38
from ppcls.data.dataloader.face_dataset import FiveValidationDataset, AdaFaceDataset
39
from ppcls.data.dataloader.custom_label_dataset import CustomLabelDataset
40
from ppcls.data.dataloader.cifar import Cifar10, Cifar100
T
tianyi1997 已提交
41
from ppcls.data.dataloader.metabin_sampler import DomainShuffleBatchSampler, NaiveIdentityBatchSampler
F
Felix 已提交
42

F
Felix 已提交
43
# sampler
D
dongshuilong 已提交
44
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
W
dbg  
weishengyu 已提交
45
from ppcls.data.dataloader.pk_sampler import PKSampler
W
dbg  
weishengyu 已提交
46
from ppcls.data.dataloader.mix_sampler import MixSampler
47
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
C
cuicheng01 已提交
48
from ppcls.data import preprocess
W
dbg  
weishengyu 已提交
49
from ppcls.data.preprocess import transform
F
Felix 已提交
50

D
dongshuilong 已提交
51

G
gaotingquan 已提交
52
def create_operators(params, class_num=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65
    """
    create operators based on the config

    Args:
        params(list): a dict list, used to create some operators
    """
    assert isinstance(params, list), ('operator config should be a list')
    ops = []
    for operator in params:
        assert isinstance(operator,
                          dict) and len(operator) == 1, "yaml format error"
        op_name = list(operator)[0]
        param = {} if operator[op_name] is None else operator[op_name]
G
gaotingquan 已提交
66 67 68 69
        op_func = getattr(preprocess, op_name)
        if "class_num" in inspect.getfullargspec(op_func).args:
            param.update({"class_num": class_num})
        op = op_func(**param)
littletomatodonkey's avatar
littletomatodonkey 已提交
70 71 72 73 74
        ops.append(op)

    return ops


75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int):
    """callback function on each worker subprocess after seeding and before data loading.

    Args:
        worker_id (int): Worker id in [0, num_workers - 1]
        num_workers (int): Number of subprocesses to use for data loading.
        rank (int): Rank of process in distributed environment. If in non-distributed environment, it is a constant number `0`.
        seed (int): Random seed
    """
    # The seed of each worker equals to
    # num_worker * rank + worker_id + user_seed
    worker_seed = num_workers * rank + worker_id + seed
    np.random.seed(worker_seed)
    random.seed(worker_seed)


G
gaotingquan 已提交
91
def build(config, mode, device, use_dali=False, seed=None):
92
    assert mode in [
D
dongshuilong 已提交
93 94 95
        'Train', 'Eval', 'Test', 'Gallery', 'Query', 'UnLabelTrain'
    ], "Dataset mode should be Train, Eval, Test, Gallery, Query, UnLabelTrain"
    assert mode in config.keys(), "{} config not in yaml".format(mode)
F
Felix 已提交
96
    # build dataset
W
Walter 已提交
97 98
    if use_dali:
        from ppcls.data.dataloader.dali import dali_dataloader
99 100 101 102 103
        return dali_dataloader(
            config,
            mode,
            paddle.device.get_device(),
            num_threads=config[mode]['loader']["num_workers"],
H
HydrogenSulfate 已提交
104 105
            seed=seed,
            enable_fuse=True)
littletomatodonkey's avatar
littletomatodonkey 已提交
106

G
gaotingquan 已提交
107
    class_num = config.get("class_num", None)
108
    epochs = config.get("epochs", None)
F
Felix 已提交
109
    config_dataset = config[mode]['dataset']
110
    config_dataset = copy.deepcopy(config_dataset)
F
Felix 已提交
111
    dataset_name = config_dataset.pop('name')
C
cuicheng01 已提交
112
    if 'batch_transform_ops' in config_dataset:
F
Felix 已提交
113 114 115 116 117 118
        batch_transform = config_dataset.pop('batch_transform_ops')
    else:
        batch_transform = None

    dataset = eval(dataset_name)(**config_dataset)

L
littletomatodonkey 已提交
119
    logger.debug("build dataset({}) success...".format(dataset))
F
Felix 已提交
120 121 122

    # build sampler
    config_sampler = config[mode]['sampler']
D
dongshuilong 已提交
123
    if config_sampler and "name" not in config_sampler:
F
Felix 已提交
124 125 126 127 128 129
        batch_sampler = None
        batch_size = config_sampler["batch_size"]
        drop_last = config_sampler["drop_last"]
        shuffle = config_sampler["shuffle"]
    else:
        sampler_name = config_sampler.pop("name")
130 131 132
        sampler_argspec = inspect.getargspec(eval(sampler_name).__init__).args
        if "total_epochs" in sampler_argspec:
            config_sampler.update({"total_epochs": epochs})
F
Felix 已提交
133 134
        batch_sampler = eval(sampler_name)(dataset, **config_sampler)

L
littletomatodonkey 已提交
135
    logger.debug("build batch_sampler({}) success...".format(batch_sampler))
F
Felix 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

    # build batch operator
    def mix_collate_fn(batch):
        batch = transform(batch, batch_ops)
        # batch each field
        slots = []
        for items in batch:
            for i, item in enumerate(items):
                if len(slots) < len(items):
                    slots.append([item])
                else:
                    slots[i].append(item)
        return [np.stack(slot, axis=0) for slot in slots]

    if isinstance(batch_transform, list):
G
gaotingquan 已提交
151
        batch_ops = create_operators(batch_transform, class_num)
F
Felix 已提交
152 153
        batch_collate_fn = mix_collate_fn
    else:
D
dongshuilong 已提交
154
        batch_collate_fn = None
F
Felix 已提交
155 156 157 158 159 160

    # build dataloader
    config_loader = config[mode]['loader']
    num_workers = config_loader["num_workers"]
    use_shared_memory = config_loader["use_shared_memory"]

161 162 163 164 165 166
    init_fn = partial(
        worker_init_fn,
        num_workers=num_workers,
        rank=dist.get_rank(),
        seed=seed) if seed is not None else None

F
Felix 已提交
167 168 169 170 171 172 173 174 175 176
    if batch_sampler is None:
        data_loader = DataLoader(
            dataset=dataset,
            places=device,
            num_workers=num_workers,
            return_list=True,
            use_shared_memory=use_shared_memory,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
177 178
            collate_fn=batch_collate_fn,
            worker_init_fn=init_fn)
F
Felix 已提交
179 180 181 182 183 184 185 186
    else:
        data_loader = DataLoader(
            dataset=dataset,
            places=device,
            num_workers=num_workers,
            return_list=True,
            use_shared_memory=use_shared_memory,
            batch_sampler=batch_sampler,
187 188
            collate_fn=batch_collate_fn,
            worker_init_fn=init_fn)
F
Felix 已提交
189

L
littletomatodonkey 已提交
190
    logger.debug("build data_loader({}) success...".format(data_loader))
191
    return data_loader
G
gaotingquan 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267


def build_dataloader(engine):
    if "class_num" in engine.config["Global"]:
        global_class_num = engine.config["Global"]["class_num"]
        if "class_num" not in config["Arch"]:
            engine.config["Arch"]["class_num"] = global_class_num
            msg = f"The Global.class_num will be deprecated. Please use Arch.class_num instead. Arch.class_num has been set to {global_class_num}."
        else:
            msg = "The Global.class_num will be deprecated. Please use Arch.class_num instead. The Global.class_num has been ignored."
        logger.warning(msg)

    class_num = engine.config["Arch"].get("class_num", None)
    engine.config["DataLoader"].update({"class_num": class_num})
    engine.config["DataLoader"].update({
        "epochs": engine.config["Global"]["epochs"]
    })

    use_dali = engine.config['Global'].get("use_dali", False)
    dataloader_dict = {
        "Train": None,
        "UnLabelTrain": None,
        "Eval": None,
        "Query": None,
        "Gallery": None,
        "GalleryQuery": None
    }
    if engine.mode == 'train':
        train_dataloader = build(
            engine.config["DataLoader"],
            "Train",
            engine.device,
            use_dali,
            seed=None)
        iter_per_epoch = len(train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(train_dataloader)
        if engine.config["Global"].get("iter_per_epoch", None):
            # set max iteration per epoch mannualy, when training by iteration(s), such as XBM, FixMatch.
            iter_per_epoch = engine.config["Global"].get("iter_per_epoch")
        iter_per_epoch = iter_per_epoch // engine.update_freq * engine.update_freq
        engine.iter_per_epoch = iter_per_epoch
        train_dataloader.iter_per_epoch = iter_per_epoch
        dataloader_dict["Train"] = train_dataloader

    if engine.config["DataLoader"].get('UnLabelTrain', None) is not None:
        dataloader_dict["UnLabelTrain"] = build(
            engine.config["DataLoader"],
            "UnLabelTrain",
            engine.device,
            use_dali,
            seed=None)

    if engine.mode == "eval" or (engine.mode == "train" and
                                 engine.config["Global"]["eval_during_train"]):
        if engine.eval_mode in ["classification", "adaface"]:
            dataloader_dict["Eval"] = build(
                engine.config["DataLoader"],
                "Eval",
                engine.device,
                use_dali,
                seed=None)
        elif engine.eval_mode == "retrieval":
            if len(engine.config["DataLoader"]["Eval"].keys()) == 1:
                key = list(engine.config["DataLoader"]["Eval"].keys())[0]
                dataloader_dict["GalleryQuery"] = build_dataloader(
                    engine.config["DataLoader"]["Eval"], key, engine.device,
                    use_dali)
            else:
                dataloader_dict["Gallery"] = build_dataloader(
                    engine.config["DataLoader"]["Eval"], "Gallery",
                    engine.device, use_dali)
                dataloader_dict["Query"] = build_dataloader(
                    engine.config["DataLoader"]["Eval"], "Query",
                    engine.device, use_dali)

    return dataloader_dict