__init__.py 4.4 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
W
WuHaobo 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
Felix 已提交
14 15 16 17
import copy
import paddle
import numpy as np
from paddle.io import DistributedBatchSampler, BatchSampler, DataLoader
W
WuHaobo 已提交
18

F
Felix 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
from ppcls.utils import logger

from . import datasets
from . import imaug
from . import samplers
# dataset
from .datasets.imagenet_dataset import ImageNetDataset
from .dataset.multilabel_dataset import MultiLabelDataset
# sampler
from .samplers import DistributedRandomIdentitySampler

from .preprocess import transform


def create_operators(params):
    """
    create operators based on the config
    Args:
        params(list): a dict list, used to create some operators
    """
    assert isinstance(params, list), ('operator config should be a list')
    ops = []
    for operator in params:
        print(operator)
        assert isinstance(operator,
                          dict) and len(operator) == 1, "yaml format error"
        op_name = list(operator)[0]
        param = {} if operator[op_name] is None else operator[op_name]
        op = getattr(preprocess, op_name)(**param)
        ops.append(op)

    return ops

def build_dataloader(config, mode, device, seed=None):
    assert mode in ['Train', 'Eval', 'Test'], "Mode should be Train, Eval or Test."
    # build dataset
    config_dataset = config[mode]['dataset']
    dataset_name = config_dataset.pop('name')
    if 'batch_transform_ops' in config_dataset:
        batch_transform = config_dataset.pop('batch_transform_ops')
    else:
        batch_transform = None

    dataset = eval(dataset_name)(**config_dataset)

    logger.info("build dataset({}) success...".format(dataset))

    # build sampler
    config_sampler = config[mode]['sampler']
    if "name" not in config_sampler:
        batch_sampler = None
        batch_size = config_sampler["batch_size"]
        drop_last = config_sampler["drop_last"]
        shuffle = config_sampler["shuffle"]
    else:
        sampler_name = config_sampler.pop("name")
        batch_sampler = eval(sampler_name)(dataset, **config_sampler)

    logger.info("build batch_sampler({}) success...".format(batch_sampler))

    # build batch operator
    def mix_collate_fn(batch):
        batch = transform(batch, batch_ops)
        # batch each field
        slots = []
        for items in batch:
            for i, item in enumerate(items):
                if len(slots) < len(items):
                    slots.append([item])
                else:
                    slots[i].append(item)
        return [np.stack(slot, axis=0) for slot in slots]

    if isinstance(batch_transform, list):
        batch_ops = create_operators(batch_transform)
        batch_collate_fn = mix_collate_fn
    else:
        batch_collate_fn = None 

    # build dataloader
    config_loader = config[mode]['loader']
    num_workers = config_loader["num_workers"]
    use_shared_memory = config_loader["use_shared_memory"]

    if batch_sampler is None:
        data_loader = DataLoader(
            dataset=dataset,
            places=device,
            num_workers=num_workers,
            return_list=True,
            use_shared_memory=use_shared_memory,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=batch_collate_fn)
    else:
        data_loader = DataLoader(
            dataset=dataset,
            places=device,
            num_workers=num_workers,
            return_list=True,
            use_shared_memory=use_shared_memory,
            batch_sampler=batch_sampler,
            collate_fn=batch_collate_fn)

    logger.info("build data_loader({}) success...".format(data_loader))
    
F
Felix 已提交
126 127
    return dataloader
    
F
Felix 已提交
128 129 130 131 132 133 134 135 136 137
'''
# TODO: fix the format
def build_dataloader(config, mode, device, seed=None):
    from . import reader
    from .reader import Reader
    dataloader = Reader(config, mode=mode, places=device)()
    return dataloader

    return data_loader
'''