# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import copy import random import platform import paddle import numpy as np import paddle.distributed as dist from functools import partial from paddle.io import DistributedBatchSampler, BatchSampler, DataLoader from ppcls.utils import logger from ppcls.data import dataloader # dataset from ppcls.data.dataloader.imagenet_dataset import ImageNetDataset from ppcls.data.dataloader.multilabel_dataset import MultiLabelDataset from ppcls.data.dataloader.common_dataset import create_operators from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild from ppcls.data.dataloader.logo_dataset import LogoDataset from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset from ppcls.data.dataloader.mix_dataset import MixDataset from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset from ppcls.data.dataloader.person_dataset import Market1501, MSMT17, DukeMTMC from ppcls.data.dataloader.face_dataset import FiveValidationDataset, AdaFaceDataset from ppcls.data.dataloader.custom_label_dataset import CustomLabelDataset from ppcls.data.dataloader.cifar import Cifar10, Cifar100 from ppcls.data.dataloader.metabin_sampler import DomainShuffleBatchSampler, NaiveIdentityBatchSampler # sampler from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler from ppcls.data.dataloader.pk_sampler import PKSampler from ppcls.data.dataloader.mix_sampler import MixSampler from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler from ppcls.data import preprocess from ppcls.data.preprocess import transform def create_operators(params, class_num=None): """ create operators based on the config Args: params(list): a dict list, used to create some operators """ assert isinstance(params, list), ('operator config should be a list') ops = [] for operator in params: assert isinstance(operator, dict) and len(operator) == 1, "yaml format error" op_name = list(operator)[0] param = {} if operator[op_name] is None else operator[op_name] op_func = getattr(preprocess, op_name) if "class_num" in inspect.getfullargspec(op_func).args: param.update({"class_num": class_num}) op = op_func(**param) ops.append(op) return ops def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int): """callback function on each worker subprocess after seeding and before data loading. Args: worker_id (int): Worker id in [0, num_workers - 1] num_workers (int): Number of subprocesses to use for data loading. rank (int): Rank of process in distributed environment. If in non-distributed environment, it is a constant number `0`. seed (int): Random seed """ # The seed of each worker equals to # num_worker * rank + worker_id + user_seed worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed) def build(config, mode, device, use_dali=False, seed=None): assert mode in [ 'Train', 'Eval', 'Test', 'Gallery', 'Query', 'UnLabelTrain' ], "Dataset mode should be Train, Eval, Test, Gallery, Query, UnLabelTrain" assert mode in config.keys(), "{} config not in yaml".format(mode) # build dataset if use_dali: from ppcls.data.dataloader.dali import dali_dataloader return dali_dataloader( config, mode, paddle.device.get_device(), num_threads=config[mode]['loader']["num_workers"], seed=seed, enable_fuse=True) class_num = config.get("class_num", None) epochs = config.get("epochs", None) config_dataset = config[mode]['dataset'] config_dataset = copy.deepcopy(config_dataset) dataset_name = config_dataset.pop('name') if 'batch_transform_ops' in config_dataset: batch_transform = config_dataset.pop('batch_transform_ops') else: batch_transform = None dataset = eval(dataset_name)(**config_dataset) logger.debug("build dataset({}) success...".format(dataset)) # build sampler config_sampler = config[mode]['sampler'] if config_sampler and "name" not in config_sampler: batch_sampler = None batch_size = config_sampler["batch_size"] drop_last = config_sampler["drop_last"] shuffle = config_sampler["shuffle"] else: sampler_name = config_sampler.pop("name") sampler_argspec = inspect.getargspec(eval(sampler_name).__init__).args if "total_epochs" in sampler_argspec: config_sampler.update({"total_epochs": epochs}) batch_sampler = eval(sampler_name)(dataset, **config_sampler) logger.debug("build batch_sampler({}) success...".format(batch_sampler)) # build batch operator def mix_collate_fn(batch): batch = transform(batch, batch_ops) # batch each field slots = [] for items in batch: for i, item in enumerate(items): if len(slots) < len(items): slots.append([item]) else: slots[i].append(item) return [np.stack(slot, axis=0) for slot in slots] if isinstance(batch_transform, list): batch_ops = create_operators(batch_transform, class_num) batch_collate_fn = mix_collate_fn else: batch_collate_fn = None # build dataloader config_loader = config[mode]['loader'] num_workers = config_loader["num_workers"] use_shared_memory = config_loader["use_shared_memory"] init_fn = partial( worker_init_fn, num_workers=num_workers, rank=dist.get_rank(), seed=seed) if seed is not None else None if batch_sampler is None: data_loader = DataLoader( dataset=dataset, places=device, num_workers=num_workers, return_list=True, use_shared_memory=use_shared_memory, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, collate_fn=batch_collate_fn, worker_init_fn=init_fn) else: data_loader = DataLoader( dataset=dataset, places=device, num_workers=num_workers, return_list=True, use_shared_memory=use_shared_memory, batch_sampler=batch_sampler, collate_fn=batch_collate_fn, worker_init_fn=init_fn) logger.debug("build data_loader({}) success...".format(data_loader)) return data_loader def build_dataloader(engine): if "class_num" in engine.config["Global"]: global_class_num = engine.config["Global"]["class_num"] if "class_num" not in config["Arch"]: engine.config["Arch"]["class_num"] = global_class_num msg = f"The Global.class_num will be deprecated. Please use Arch.class_num instead. Arch.class_num has been set to {global_class_num}." else: msg = "The Global.class_num will be deprecated. Please use Arch.class_num instead. The Global.class_num has been ignored." logger.warning(msg) class_num = engine.config["Arch"].get("class_num", None) engine.config["DataLoader"].update({"class_num": class_num}) engine.config["DataLoader"].update({ "epochs": engine.config["Global"]["epochs"] }) use_dali = engine.config['Global'].get("use_dali", False) dataloader_dict = { "Train": None, "UnLabelTrain": None, "Eval": None, "Query": None, "Gallery": None, "GalleryQuery": None } if engine.mode == 'train': train_dataloader = build( engine.config["DataLoader"], "Train", engine.device, use_dali, seed=None) iter_per_epoch = len(train_dataloader) - 1 if platform.system( ) == "Windows" else len(train_dataloader) if engine.config["Global"].get("iter_per_epoch", None): # set max iteration per epoch mannualy, when training by iteration(s), such as XBM, FixMatch. iter_per_epoch = engine.config["Global"].get("iter_per_epoch") iter_per_epoch = iter_per_epoch // engine.update_freq * engine.update_freq engine.iter_per_epoch = iter_per_epoch train_dataloader.iter_per_epoch = iter_per_epoch dataloader_dict["Train"] = train_dataloader if engine.config["DataLoader"].get('UnLabelTrain', None) is not None: dataloader_dict["UnLabelTrain"] = build( engine.config["DataLoader"], "UnLabelTrain", engine.device, use_dali, seed=None) if engine.mode == "eval" or (engine.mode == "train" and engine.config["Global"]["eval_during_train"]): if engine.eval_mode in ["classification", "adaface"]: dataloader_dict["Eval"] = build( engine.config["DataLoader"], "Eval", engine.device, use_dali, seed=None) elif engine.eval_mode == "retrieval": if len(engine.config["DataLoader"]["Eval"].keys()) == 1: key = list(engine.config["DataLoader"]["Eval"].keys())[0] dataloader_dict["GalleryQuery"] = build_dataloader( engine.config["DataLoader"]["Eval"], key, engine.device, use_dali) else: dataloader_dict["Gallery"] = build_dataloader( engine.config["DataLoader"]["Eval"], "Gallery", engine.device, use_dali) dataloader_dict["Query"] = build_dataloader( engine.config["DataLoader"]["Eval"], "Query", engine.device, use_dali) return dataloader_dict