__init__.py 4.5 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
W
WuHaobo 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
dbg  
weishengyu 已提交
14

F
Felix 已提交
15 16 17 18 19 20
import copy
import paddle
import numpy as np
from paddle.io import DistributedBatchSampler, BatchSampler, DataLoader
from ppcls.utils import logger

W
dbg  
weishengyu 已提交
21
from ppcls.data import dataloader
F
Felix 已提交
22
# dataset
W
dbg  
weishengyu 已提交
23 24 25 26
from ppcls.data.dataloader.imagenet_dataset import ImageNetDataset
from ppcls.data.dataloader.multilabel_dataset import MultiLabelDataset
from ppcls.data.dataloader.common_dataset import create_operators
from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
F
Felix 已提交
27
from ppcls.data.dataloader.logo_dataset import LogoDataset
B
Bin Lu 已提交
28
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
F
Felix 已提交
29

F
Felix 已提交
30
# sampler
D
dongshuilong 已提交
31
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
W
dbg  
weishengyu 已提交
32
from ppcls.data.preprocess import transform
F
Felix 已提交
33

D
dongshuilong 已提交
34

littletomatodonkey's avatar
littletomatodonkey 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
def create_operators(params):
    """
    create operators based on the config

    Args:
        params(list): a dict list, used to create some operators
    """
    assert isinstance(params, list), ('operator config should be a list')
    ops = []
    for operator in params:
        assert isinstance(operator,
                          dict) and len(operator) == 1, "yaml format error"
        op_name = list(operator)[0]
        param = {} if operator[op_name] is None else operator[op_name]
        op = getattr(imaug, op_name)(**param)
        ops.append(op)

    return ops


F
Felix 已提交
55
def build_dataloader(config, mode, device, seed=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
56 57 58 59 60
    assert mode in [
        'Train',
        'Eval',
        'Test',
    ], "Mode should be Train, Eval, Test"
F
Felix 已提交
61 62
    # build dataset
    config_dataset = config[mode]['dataset']
63
    config_dataset = copy.deepcopy(config_dataset)
F
Felix 已提交
64
    dataset_name = config_dataset.pop('name')
C
cuicheng01 已提交
65
    if 'batch_transform_ops' in config_dataset:
F
Felix 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        batch_transform = config_dataset.pop('batch_transform_ops')
    else:
        batch_transform = None

    dataset = eval(dataset_name)(**config_dataset)

    logger.info("build dataset({}) success...".format(dataset))

    # build sampler
    config_sampler = config[mode]['sampler']
    if "name" not in config_sampler:
        batch_sampler = None
        batch_size = config_sampler["batch_size"]
        drop_last = config_sampler["drop_last"]
        shuffle = config_sampler["shuffle"]
    else:
        sampler_name = config_sampler.pop("name")
        batch_sampler = eval(sampler_name)(dataset, **config_sampler)

    logger.info("build batch_sampler({}) success...".format(batch_sampler))

    # build batch operator
    def mix_collate_fn(batch):
        batch = transform(batch, batch_ops)
        # batch each field
        slots = []
        for items in batch:
            for i, item in enumerate(items):
                if len(slots) < len(items):
                    slots.append([item])
                else:
                    slots[i].append(item)
        return [np.stack(slot, axis=0) for slot in slots]

    if isinstance(batch_transform, list):
        batch_ops = create_operators(batch_transform)
        batch_collate_fn = mix_collate_fn
    else:
D
dongshuilong 已提交
104
        batch_collate_fn = None
F
Felix 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    # build dataloader
    config_loader = config[mode]['loader']
    num_workers = config_loader["num_workers"]
    use_shared_memory = config_loader["use_shared_memory"]

    if batch_sampler is None:
        data_loader = DataLoader(
            dataset=dataset,
            places=device,
            num_workers=num_workers,
            return_list=True,
            use_shared_memory=use_shared_memory,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=batch_collate_fn)
    else:
        data_loader = DataLoader(
            dataset=dataset,
            places=device,
            num_workers=num_workers,
            return_list=True,
            use_shared_memory=use_shared_memory,
            batch_sampler=batch_sampler,
            collate_fn=batch_collate_fn)

    logger.info("build data_loader({}) success...".format(data_loader))
133
    return data_loader