resnet.py 20.5 KB
Newer Older
C
cuicheng01 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
C
cuicheng01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
cuicheng01 已提交
15
from __future__ import absolute_import, division, print_function
C
cuicheng01 已提交
16 17 18 19 20 21 22 23 24 25

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math

C
cuicheng01 已提交
26
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
D
dongshuilong 已提交
27
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
28 29

MODEL_URLS = {
D
dongshuilong 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    "ResNet18":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams",
    "ResNet18_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams",
    "ResNet34":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams",
    "ResNet34_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams",
    "ResNet50":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams",
    "ResNet50_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams",
    "ResNet101":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams",
    "ResNet101_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams",
    "ResNet152":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams",
    "ResNet152_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams",
    "ResNet200_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams",
C
cuicheng01 已提交
52
}
C
cuicheng01 已提交
53

54 55 56 57 58 59 60 61 62
MODEL_STAGES_PATTERN = {
    "ResNet18": ["blocks[1]", "blocks[3]", "blocks[5]", "blocks[7]"],
    "ResNet34": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
    "ResNet50": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"],
    "ResNet101": ["blocks[2]", "blocks[6]", "blocks[29]", "blocks[32]"],
    "ResNet152": ["blocks[2]", "blocks[10]", "blocks[46]", "blocks[49]"],
    "ResNet200": ["blocks[2]", "blocks[14]", "blocks[62]", "blocks[65]"]
}

C
cuicheng01 已提交
63 64 65 66 67 68 69 70 71 72
__all__ = MODEL_URLS.keys()
'''
ResNet config: dict.
    key: depth of ResNet.
    values: config's dict of specific model.
        keys:
            block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
            block_depth: The number of blocks in different stages in ResNet.
            num_channels: The number of channels to enter the next stage.
'''
C
cuicheng01 已提交
73 74
NET_CONFIG = {
    "18": {
D
dongshuilong 已提交
75 76 77 78
        "block_type": "BasicBlock",
        "block_depth": [2, 2, 2, 2],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
79
    "34": {
D
dongshuilong 已提交
80 81 82 83
        "block_type": "BasicBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 64, 128, 256]
    },
C
cuicheng01 已提交
84
    "50": {
D
dongshuilong 已提交
85 86 87 88
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 6, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
89
    "101": {
D
dongshuilong 已提交
90 91 92 93
        "block_type": "BottleneckBlock",
        "block_depth": [3, 4, 23, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
94
    "152": {
D
dongshuilong 已提交
95 96 97 98
        "block_type": "BottleneckBlock",
        "block_depth": [3, 8, 36, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
99
    "200": {
D
dongshuilong 已提交
100 101 102 103
        "block_type": "BottleneckBlock",
        "block_depth": [3, 12, 48, 3],
        "num_channels": [64, 256, 512, 1024]
    },
C
cuicheng01 已提交
104 105 106 107 108 109 110 111 112 113 114 115
}


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
118
        super().__init__()
C
cuicheng01 已提交
119 120
        self.is_vd_mode = is_vd_mode
        self.act = act
C
cuicheng01 已提交
121
        self.avg_pool = AvgPool2D(
C
cuicheng01 已提交
122 123 124 125 126 127 128 129 130
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
131 132
            bias_attr=False,
            data_format=data_format)
C
cuicheng01 已提交
133 134 135
        self.bn = BatchNorm(
            num_filters,
            param_attr=ParamAttr(learning_rate=lr_mult),
littletomatodonkey's avatar
littletomatodonkey 已提交
136 137
            bias_attr=ParamAttr(learning_rate=lr_mult),
            data_layout=data_format)
C
cuicheng01 已提交
138 139 140 141
        self.relu = nn.ReLU()

    def forward(self, x):
        if self.is_vd_mode:
C
cuicheng01 已提交
142
            x = self.avg_pool(x)
C
cuicheng01 已提交
143 144 145 146 147 148 149 150
        x = self.conv(x)
        x = self.bn(x)
        if self.act:
            x = self.relu(x)
        return x


class BottleneckBlock(TheseusLayer):
littletomatodonkey's avatar
littletomatodonkey 已提交
151 152 153 154 155 156 157 158
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
159
        super().__init__()
C
cuicheng01 已提交
160 161 162 163 164

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
C
cuicheng01 已提交
165
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
166 167
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
168 169 170 171 172
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
173
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
174 175
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
176 177 178 179 180
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
181 182
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
183 184 185 186 187 188 189 190

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride if if_first else 1,
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
191 192
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        self.relu = nn.ReLU()
        self.shortcut = shortcut

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        x = self.conv2(x)

        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class BasicBlock(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
218 219
                 lr_mult=1.0,
                 data_format="NCHW"):
C
cuicheng01 已提交
220 221
        super().__init__()

C
cuicheng01 已提交
222 223 224 225 226 227
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
C
cuicheng01 已提交
228
            act="relu",
littletomatodonkey's avatar
littletomatodonkey 已提交
229 230
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
231 232 233 234 235
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
236 237
            lr_mult=lr_mult,
            data_format=data_format)
C
cuicheng01 已提交
238 239 240 241 242 243 244
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride if if_first else 1,
                is_vd_mode=False if if_first else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
245 246
                lr_mult=lr_mult,
                data_format=data_format)
C
cuicheng01 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        self.shortcut = shortcut
        self.relu = nn.ReLU()

    def forward(self, x):
        identity = x
        x = self.conv0(x)
        x = self.conv1(x)
        if self.shortcut:
            short = identity
        else:
            short = self.short(identity)
        x = paddle.add(x=x, y=short)
        x = self.relu(x)
        return x


class ResNet(TheseusLayer):
C
cuicheng01 已提交
264 265 266 267 268 269 270 271 272
    """
    ResNet
    Args:
        config: dict. config of ResNet.
        version: str="vb". Different version of ResNet, version vd can perform better. 
        class_num: int=1000. The number of classes.
        lr_mult_list: list. Control the learning rate of different stages.
    Returns:
        model: nn.Layer. Specific ResNet model depends on args.
C
cuicheng01 已提交
273
    """
D
dongshuilong 已提交
274

C
cuicheng01 已提交
275 276
    def __init__(self,
                 config,
277
                 stages_pattern,
C
cuicheng01 已提交
278
                 version="vb",
H
HydrogenSulfate 已提交
279
                 stem_act="relu",
C
cuicheng01 已提交
280
                 class_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
281 282
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
                 data_format="NCHW",
W
weishengyu 已提交
283
                 input_image_channel=3,
284 285
                 return_patterns=None,
                 return_stages=None):
C
cuicheng01 已提交
286
        super().__init__()
C
cuicheng01 已提交
287 288 289 290

        self.cfg = config
        self.lr_mult_list = lr_mult_list
        self.is_vd_mode = version == "vd"
C
cuicheng01 已提交
291 292 293 294 295 296
        self.class_num = class_num
        self.num_filters = [64, 128, 256, 512]
        self.block_depth = self.cfg["block_depth"]
        self.block_type = self.cfg["block_type"]
        self.num_channels = self.cfg["num_channels"]
        self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
D
dongshuilong 已提交
297

C
cuicheng01 已提交
298 299 300 301
        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
D
dongshuilong 已提交
302 303 304
        assert len(self.lr_mult_list
                   ) == 5, "lr_mult_list length should be 5 but got {}".format(
                       len(self.lr_mult_list))
C
cuicheng01 已提交
305 306

        self.stem_cfg = {
C
cuicheng01 已提交
307
            #num_channels, num_filters, filter_size, stride
littletomatodonkey's avatar
littletomatodonkey 已提交
308 309 310
            "vb": [[input_image_channel, 64, 7, 2]],
            "vd":
            [[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
D
dongshuilong 已提交
311 312
        }

H
HydrogenSulfate 已提交
313
        self.stem = nn.Sequential(*[
C
cuicheng01 已提交
314
            ConvBNLayer(
D
dongshuilong 已提交
315 316 317 318
                num_channels=in_c,
                num_filters=out_c,
                filter_size=k,
                stride=s,
W
dbg  
weishengyu 已提交
319
                act=stem_act,
littletomatodonkey's avatar
littletomatodonkey 已提交
320 321
                lr_mult=self.lr_mult_list[0],
                data_format=data_format)
C
cuicheng01 已提交
322 323
            for in_c, out_c, k, s in self.stem_cfg[version]
        ])
D
dongshuilong 已提交
324

littletomatodonkey's avatar
littletomatodonkey 已提交
325 326
        self.max_pool = MaxPool2D(
            kernel_size=3, stride=2, padding=1, data_format=data_format)
C
cuicheng01 已提交
327 328
        block_list = []
        for block_idx in range(len(self.block_depth)):
C
cuicheng01 已提交
329
            shortcut = False
C
cuicheng01 已提交
330
            for i in range(self.block_depth[block_idx]):
D
dongshuilong 已提交
331 332 333
                block_list.append(globals()[self.block_type](
                    num_channels=self.num_channels[block_idx] if i == 0 else
                    self.num_filters[block_idx] * self.channels_mult,
C
cuicheng01 已提交
334 335
                    num_filters=self.num_filters[block_idx],
                    stride=2 if i == 0 and block_idx != 0 else 1,
C
cuicheng01 已提交
336
                    shortcut=shortcut,
C
cuicheng01 已提交
337
                    if_first=block_idx == i == 0 if version == "vd" else True,
littletomatodonkey's avatar
littletomatodonkey 已提交
338 339
                    lr_mult=self.lr_mult_list[block_idx + 1],
                    data_format=data_format))
D
dongshuilong 已提交
340
                shortcut = True
C
cuicheng01 已提交
341
        self.blocks = nn.Sequential(*block_list)
C
cuicheng01 已提交
342

littletomatodonkey's avatar
littletomatodonkey 已提交
343
        self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format)
344
        self.flatten = nn.Flatten()
W
dbg  
weishengyu 已提交
345
        self.avg_pool_channels = self.num_channels[-1] * 2
C
cuicheng01 已提交
346
        stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0)
C
cuicheng01 已提交
347
        self.fc = Linear(
C
cuicheng01 已提交
348
            self.avg_pool_channels,
C
cuicheng01 已提交
349
            self.class_num,
D
dongshuilong 已提交
350
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
C
cuicheng01 已提交
351

littletomatodonkey's avatar
littletomatodonkey 已提交
352
        self.data_format = data_format
353 354 355 356 357

        super().init_res(
            stages_pattern,
            return_patterns=return_patterns,
            return_stages=return_stages)
littletomatodonkey's avatar
littletomatodonkey 已提交
358

C
cuicheng01 已提交
359
    def forward(self, x):
littletomatodonkey's avatar
littletomatodonkey 已提交
360 361 362 363 364 365 366 367 368 369
        with paddle.static.amp.fp16_guard():
            if self.data_format == "NHWC":
                x = paddle.transpose(x, [0, 2, 3, 1])
                x.stop_gradient = True
            x = self.stem(x)
            x = self.max_pool(x)
            x = self.blocks(x)
            x = self.avg_pool(x)
            x = self.flatten(x)
            x = self.fc(x)
C
cuicheng01 已提交
370 371 372
        return x


D
dongshuilong 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386
def _load_pretrained(pretrained, model, model_url, use_ssld):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )


def ResNet18(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
387 388 389
    """
    ResNet18
    Args:
D
dongshuilong 已提交
390 391 392
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
393 394 395
    Returns:
        model: nn.Layer. Specific `ResNet18` model depends on args.
    """
396 397 398 399 400
    model = ResNet(
        config=NET_CONFIG["18"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
401
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld)
C
cuicheng01 已提交
402 403
    return model

C
cuicheng01 已提交
404

D
dongshuilong 已提交
405
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
406 407 408
    """
    ResNet18_vd
    Args:
D
dongshuilong 已提交
409 410 411
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
412 413 414
    Returns:
        model: nn.Layer. Specific `ResNet18_vd` model depends on args.
    """
415 416 417 418 419
    model = ResNet(
        config=NET_CONFIG["18"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet18"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
420
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld)
C
cuicheng01 已提交
421 422
    return model

C
cuicheng01 已提交
423

D
dongshuilong 已提交
424
def ResNet34(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
425 426 427
    """
    ResNet34
    Args:
D
dongshuilong 已提交
428 429 430
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
431
    Returns:
C
cuicheng01 已提交
432
        model: nn.Layer. Specific `ResNet34` model depends on args.
C
cuicheng01 已提交
433
    """
434 435 436 437 438
    model = ResNet(
        config=NET_CONFIG["34"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
439
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld)
C
cuicheng01 已提交
440 441 442
    return model


D
dongshuilong 已提交
443
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
444 445 446
    """
    ResNet34_vd
    Args:
D
dongshuilong 已提交
447 448 449
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
450
    Returns:
C
cuicheng01 已提交
451
        model: nn.Layer. Specific `ResNet34_vd` model depends on args.
C
cuicheng01 已提交
452
    """
453 454 455 456 457
    model = ResNet(
        config=NET_CONFIG["34"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet34"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
458
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld)
C
cuicheng01 已提交
459 460 461
    return model


D
dongshuilong 已提交
462
def ResNet50(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
463 464 465
    """
    ResNet50
    Args:
D
dongshuilong 已提交
466 467 468
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
469 470 471
    Returns:
        model: nn.Layer. Specific `ResNet50` model depends on args.
    """
472 473 474 475 476
    model = ResNet(
        config=NET_CONFIG["50"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
477
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
C
cuicheng01 已提交
478 479
    return model

C
cuicheng01 已提交
480

D
dongshuilong 已提交
481
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
482 483 484
    """
    ResNet50_vd
    Args:
D
dongshuilong 已提交
485 486 487
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
488 489 490
    Returns:
        model: nn.Layer. Specific `ResNet50_vd` model depends on args.
    """
491 492 493 494 495
    model = ResNet(
        config=NET_CONFIG["50"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet50"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
496
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld)
C
cuicheng01 已提交
497 498
    return model

C
cuicheng01 已提交
499

D
dongshuilong 已提交
500
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
501 502 503
    """
    ResNet101
    Args:
D
dongshuilong 已提交
504 505 506
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
507 508 509
    Returns:
        model: nn.Layer. Specific `ResNet101` model depends on args.
    """
510 511 512 513 514
    model = ResNet(
        config=NET_CONFIG["101"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
515
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
C
cuicheng01 已提交
516 517
    return model

C
cuicheng01 已提交
518

D
dongshuilong 已提交
519
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
520 521 522
    """
    ResNet101_vd
    Args:
D
dongshuilong 已提交
523 524 525
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
526 527 528
    Returns:
        model: nn.Layer. Specific `ResNet101_vd` model depends on args.
    """
529 530 531 532 533
    model = ResNet(
        config=NET_CONFIG["101"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet101"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
534
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld)
C
cuicheng01 已提交
535 536
    return model

C
cuicheng01 已提交
537

D
dongshuilong 已提交
538
def ResNet152(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
539 540 541
    """
    ResNet152
    Args:
D
dongshuilong 已提交
542 543 544
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
545 546 547
    Returns:
        model: nn.Layer. Specific `ResNet152` model depends on args.
    """
548 549 550 551 552
    model = ResNet(
        config=NET_CONFIG["152"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
        version="vb",
        **kwargs)
D
dongshuilong 已提交
553
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld)
C
cuicheng01 已提交
554 555
    return model

C
cuicheng01 已提交
556

D
dongshuilong 已提交
557
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
558 559 560
    """
    ResNet152_vd
    Args:
D
dongshuilong 已提交
561 562 563
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
564 565 566
    Returns:
        model: nn.Layer. Specific `ResNet152_vd` model depends on args.
    """
567 568 569 570 571
    model = ResNet(
        config=NET_CONFIG["152"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet152"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
572
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld)
C
cuicheng01 已提交
573 574 575
    return model


D
dongshuilong 已提交
576
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs):
C
cuicheng01 已提交
577 578 579
    """
    ResNet200_vd
    Args:
D
dongshuilong 已提交
580 581 582
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
C
cuicheng01 已提交
583 584 585
    Returns:
        model: nn.Layer. Specific `ResNet200_vd` model depends on args.
    """
586 587 588 589 590
    model = ResNet(
        config=NET_CONFIG["200"],
        stages_pattern=MODEL_STAGES_PATTERN["ResNet200"],
        version="vd",
        **kwargs)
D
dongshuilong 已提交
591
    _load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld)
C
cuicheng01 已提交
592
    return model