resnet_vd.py 10.1 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20 21 22
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
26 27

__all__ = [
28
    "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
W
WuHaobo 已提交
29 30 31
]


32 33 34 35 36 37 38 39 40
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
W
WuHaobo 已提交
41
            act=None,
42 43 44 45 46
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = Pool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
47 48 49 50 51
            pool_size=2,
            pool_stride=2,
            pool_padding=0,
            pool_type='avg',
            ceil_mode=True)
52 53
        self._conv = Conv2D(
            num_channels=num_channels,
W
WuHaobo 已提交
54 55
            num_filters=num_filters,
            filter_size=filter_size,
56
            stride=stride,
W
WuHaobo 已提交
57 58 59
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
60
            param_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
61 62 63 64 65
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
66 67
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
68
            act=act,
69 70 71 72 73 74 75 76 77 78 79 80
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y

W
WuHaobo 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93
class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
94 95 96 97
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
98 99
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
100 101 102 103 104
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
105 106
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
107 108 109 110 111
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
W
WuHaobo 已提交
127

128 129 130 131
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
132 133
        y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
        return y
W
WuHaobo 已提交
134

135

littletomatodonkey's avatar
littletomatodonkey 已提交
136
class BasicBlock(fluid.dygraph.Layer):
137 138 139 140 141 142 143
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
144
        super(BasicBlock, self).__init__()
145 146 147
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
148 149 150
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
151
            act='relu',
W
WuHaobo 已提交
152
            name=name + "_branch2a")
153 154
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
155 156 157 158 159
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
179 180
        y = fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
        return y
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229


class ResNet_vd(fluid.dygraph.Layer):
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
W
WuHaobo 已提交
230

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
260
                    basic_block = self.add_sublayer(
261
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
262
                        BasicBlock(
263 264 265 266 267 268 269
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
270
                    self.block_list.append(basic_block)
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
                    shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y


def ResNet18_vd(**args):
    model = ResNet_vd(layers=18, **args)
W
WuHaobo 已提交
303 304 305
    return model


306 307
def ResNet34_vd(**args):
    model = ResNet_vd(layers=34, **args)
W
WuHaobo 已提交
308 309 310
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
311
def ResNet50_vd(**args):
312
    model = ResNet_vd(layers=50, **args)
W
WuHaobo 已提交
313 314 315
    return model


316 317
def ResNet101_vd(**args):
    model = ResNet_vd(layers=101, **args)
W
WuHaobo 已提交
318 319 320
    return model


321 322
def ResNet152_vd(**args):
    model = ResNet_vd(layers=152, **args)
W
WuHaobo 已提交
323 324 325
    return model


326 327
def ResNet200_vd(**args):
    model = ResNet_vd(layers=200, **args)
W
WuHaobo 已提交
328
    return model