reshard.py 117.1 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from functools import reduce

import paddle
18
from paddle.distributed.fleet.meta_optimizers.common import OpRole
19
from paddle.framework import LayerHelper, OpProtoHolder, Program, core
20 21 22 23 24 25 26 27 28 29 30
from paddle.utils import unique_name

from .cost import (
    AllgatherOpCost,
    CommContext,
    ConcatOpCost,
    SendOpCost,
    SliceOpCost,
    SplitOpCost,
    build_comm_desc,
)
31
from .dist_attribute import TensorDistAttr
32
from .dist_context import DistributedContext
33 34
from .process_group import new_process_group
from .utils import is_gradient_clip_op
C
caozhou 已提交
35

36
# NOTE: If op in _g_special_ops or _g_gradient_clip_ops, it will not be resharded.
37
_g_special_ops = ['check_finite_and_unscale', 'update_loss_scaling']
38
_g_gradient_clip_ops = [
39 40 41 42 43
    "sum",
    "sqrt",
    "fill_constant",
    "elementwise_max",
    "elementwise_div",
44
]
45
_g_subblock_ops = ["while", "conditional_block"]
46 47 48 49 50 51 52 53


def get_var_with_recursion(var_name, block, program):
    """Get var in the parent block if not found in the current block"""
    var = None
    if var_name in block.vars:
        var = block.vars[var_name]
    else:
54 55 56 57
        var = block._var_recursive(var_name)
        # parent_block = program.blocks[block.parent_idx]
        # if var_name in parent_block.vars:
        #     var = parent_block.vars[var_name]
58
    assert var is not None, f"{var.name} is not found"
59

60
    return var
61

C
caozhou 已提交
62 63 64 65 66 67 68

class AllGatherOpDesc:
    """
    Describe the allgather op in the reshard phase.

    Args:
        group (list): Process group.
69 70
        shape (list): The tensor shape.
        is_bool (bool): Whether allgather bool data. Default: False.
C
caozhou 已提交
71 72
    """

73
    def __init__(self, group, shape, is_bool=False):
C
caozhou 已提交
74 75
        self._group = group
        self._desc = "all_gather"
76 77 78 79 80 81
        self._shape = shape
        self._is_bool = is_bool

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
82 83 84 85 86 87 88 89 90

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

91 92 93 94
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
95
    def __repr__(self):
96
        return f"op: {self._desc}, group: {self._group}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
97 98


99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
class AllGatherConcatOpDesc:
    """
    Describe the c_concat op in the reshard phase.

    Args:
        group (list): Process group.
        shape (list): The tensor shape.
        is_bool (bool): Whether c_concat bool data. Default: False.
    """

    def __init__(self, group, shape, is_bool=False):
        self._group = group
        self._desc = "c_concat"
        self._shape = shape
        self._is_bool = is_bool

    @property
    def is_bool(self):
        return self._is_bool

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

    @property
    def shape(self):
        return self._shape

    def __repr__(self):
        return f"op: {self._desc}, group: {self._group}, shape: {self._shape}, is_bool: {self._is_bool}."


C
caozhou 已提交
135 136 137 138 139 140
class SendOpDesc:
    """
    Describe the send op in the reshard phase.

    Args:
        partition_index (list): The index of partition in complete tensor.
141
        src (int): The source process to send.
C
caozhou 已提交
142
        dst (int): The destination process to receive.
143
        is_bool (bool): Whether send bool data. Default: False.
C
caozhou 已提交
144 145
    """

146
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
147 148 149
        self._dst = dst
        self._partition_index = partition_index
        self._desc = "send"
150 151 152 153 154 155 156 157 158 159 160
        self._shape = []
        self._is_bool = is_bool
        self._src = src

    @property
    def src(self):
        return self._src

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def dst(self):
        return self._dst

    @property
    def desc(self):
        return self._desc

174 175 176 177 178 179 180
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
181
    def __repr__(self):
182
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
183 184 185 186 187 188 189 190 191


class RecvOpDesc:
    """
    Describe the recv op in the reshard op.

    Args:
        partition_index (list): The index of partition in complete tensor.
        src (int): The source process to send.
192 193
        dst (int): The destination process to receive.
        is_bool (bool): Whether receive bool data. Default: False.
C
caozhou 已提交
194 195
    """

196
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
197 198 199
        self._src = src
        self._partition_index = partition_index
        self._desc = "recv"
200 201 202 203 204 205 206 207 208 209 210
        self._shape = []
        self._is_bool = is_bool
        self._dst = dst

    @property
    def dst(self):
        return self._dst

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def src(self):
        return self._src

    @property
    def desc(self):
        return self._desc

224 225 226 227 228 229 230
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
231
    def __repr__(self):
232
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
233 234 235 236 237 238 239


class SliceOpDesc:
    """
    Describe the slice op in the reshard phase.

    Args:
240 241 242 243
        starts (list): It represents start indices of corresponding axis in ``axes``.
        ends (list):  It represents end indices of corresponding axis in ``axes``.
        axes (list):  Axes that `starts` and `ends` apply to.
        shape (list): The shape of the tensor to be sliced.
C
caozhou 已提交
244 245
    """

246
    def __init__(self, starts, ends, axes, shape=None):
C
caozhou 已提交
247 248 249 250
        self._starts = starts
        self._ends = ends
        self._axes = axes
        self._desc = "slice"
251
        self._shape = shape
C
caozhou 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

    @property
    def starts(self):
        return self._starts

    @property
    def ends(self):
        return self._ends

    @property
    def axes(self):
        return self._axes

    @property
    def desc(self):
        return self._desc

269 270 271 272
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
273
    def __repr__(self):
274 275 276 277
        if self._shape is not None:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}, shape: {self._shape}."
        else:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}."
C
caozhou 已提交
278 279 280 281 282 283 284


class ConcatOpDesc:
    """
    Describe the concat op in the reshard phase.

    Args:
285
        partition_index_list (list): The list contains all partition index.
C
caozhou 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    """

    def __init__(self, partition_index_list):
        self._partition_index_list = partition_index_list
        self._desc = "concat"

    @property
    def partition_index_list(self):
        return self._partition_index_list

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index_list: {self._partition_index_list}."


304 305
class Inserter:
    """Insert op required in the reshard process."""
C
caozhou 已提交
306

307
    @staticmethod
308 309
    def insert_cast_op(block, idx, tensor, op_role, tensor_type):
        # to avoid name conflict with framework
310
        new_var_name = paddle.utils.unique_name.generate_with_ignorable_key(
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
            ".".join(["cast@RESHARD", 'tmp'])
        )
        out = block.create_var(
            name=new_var_name,
            dtype=tensor_type,
            type=tensor.type,
            lod_level=tensor.lod_level,
        )
        cast_op = block._insert_op(
            idx,
            type='cast',
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
                'in_dtype': tensor.dtype,
                'out_dtype': out.dtype,
                'op_role': op_role,
            },
        )
330
        cast_op._set_attr('op_namescope', "/auto_parallel/reshard")
331 332 333 334
        return out

    @staticmethod
    def insert_send_op(block, idx, tensor, src, dst, op_role):
335 336
        """Insert send op into block at the given index."""
        op_type = 'send_v2'
337 338
        # use pair comm group
        process_group = new_process_group([src, dst])
339 340 341 342 343 344 345 346 347 348 349 350
        send_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(dst),
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': True,
            },
        )
351
        send_op._set_attr('op_namescope', "/auto_parallel/reshard")
352 353

    @staticmethod
354
    def insert_recv_op(block, idx, tensor, src, dst, op_role):
355 356
        """Insert recv op into block at the given index."""
        op_type = 'recv_v2'
357 358
        # use pair group
        process_group = new_process_group([src, dst])
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        recv_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(src),
                'out_shape': tensor.shape,
                'dtype': tensor.dtype,
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': True,
            },
        )
374
        recv_op._set_attr('op_namescope', "/auto_parallel/reshard")
375

376 377 378 379
    @staticmethod
    def insert_reset_lod_op(block, idx, X, Y, op_role):
        """Insert reset_lod op into block at the given index."""

380
        new_var_name = paddle.utils.unique_name.generate_with_ignorable_key(
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
            ".".join(["reset_lod@RESHARD", 'tmp'])
        )
        reset_lod_out = block.create_var(
            name=new_var_name,
            shape=X.shape,
            type=X.type,
            dtype=X.dtype,
            lod_level=X.lod_level,
        )

        reset_op = block._insert_op(
            idx,
            type="lod_reset",
            inputs={'X': X, 'Y': Y},
            outputs={'Out': reset_lod_out},
            attrs={'op_role': op_role},
        )
398
        reset_op._set_attr('op_namescope', "/auto_parallel/reshard")
399 400
        return reset_lod_out

401 402 403 404 405 406 407
    @staticmethod
    def insert_concat_op(block, idx, tensors, axis, op_role):
        """Insert concat op into block at the given block."""
        inputs = {'X': tensors}
        attrs = {}
        attrs['axis'] = axis
        attrs['op_role'] = op_role
408 409
        # to avoid name conflict with framework
        helper = LayerHelper('concat@RESHARD', **locals())
410
        with paddle.static.program_guard(block.program):
411
            out = block.create_var(
412
                name=paddle.utils.unique_name.generate_with_ignorable_key(
413 414
                    ".".join([helper.name, 'tmp'])
                ),
415 416 417 418 419
                dtype=tensors[0].dtype,
                shape=None,
                lod_level=tensors[0].lod_level,
                type=tensors[0].type,
                persistable=False,
420 421 422 423 424 425 426 427 428
                stop_gradient=False,
            )
        concat_op = block._insert_op(
            idx,
            type='concat',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
429
        concat_op._set_attr('op_namescope', "/auto_parallel/reshard")
430
        return out
C
caozhou 已提交
431

432
    @staticmethod
433 434 435
    def insert_slice_op(
        block, idx, tensor, starts, ends, axes, new_var_name, op_role
    ):
436
        """Insert slice op into block at the given block."""
437 438 439 440 441 442 443 444 445 446 447 448 449
        # This is a hack to insert split op to get slice tensor
        # 1. [128, 128] => [64, 128]: split
        # 2. [128, 128] => [128, 128]: assign
        # 3. [128, 128] => [64, 64]: slice, it will replaced by multi split
        global_shape = tensor.shape
        slice_shape = [ends[i] - starts[i] for i in range(len(starts))]
        diff_dims = []
        for index, item in enumerate(slice_shape):
            if item != global_shape[index]:
                diff_dims.append(index)

        # use assign
        if len(diff_dims) == 0:
450 451 452 453 454 455 456
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                shape=slice_shape,
                lod_level=tensor.lod_level,
            )
457 458 459
            inputs = {'X': [tensor]}
            outputs = {"Out": [out]}
            attrs = {"in_place": False}
460 461 462
            slice_op = block._insert_op(
                idx, type="assign", inputs=inputs, outputs=outputs, attrs=attrs
            )
463
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
            return out

        # use split once
        elif len(diff_dims) == 1:
            diff_dim = diff_dims[0]
            num_or_sections = global_shape[diff_dim] // slice_shape[diff_dim]
            axis = diff_dim
            cur_idx = starts[diff_dim] // slice_shape[diff_dim]
            input_shape = global_shape
            inputs = {'X': tensor}
            attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
            new_shape = []
            for index, item in enumerate(tensor.shape):
                if index != axis:
                    new_shape.append(item)
                else:
                    new_shape.append(item // num_or_sections)
            with paddle.static.program_guard(block.program):
                outs = [
483
                    block.create_var(
484
                        name=paddle.utils.unique_name.generate_with_ignorable_key(
485 486 487 488 489 490 491 492 493
                            ".".join(['split@RESHARD', 'tmp'])
                        ),
                        dtype=tensor.dtype,
                        shape=None,
                        type=tensor.type,
                        persistable=False,
                        lod_level=tensor.lod_level,
                        stop_gradient=False,
                    )
494 495 496
                    for i in range(num_or_sections)
                ]
                out = outs[cur_idx]
497 498 499 500 501 502 503
            split_op = block._insert_op(
                idx,
                type="split",
                inputs=inputs,
                outputs={'Out': outs},
                attrs=attrs,
            )
504
            split_op._set_attr('op_namescope', "/auto_parallel/reshard")
505 506 507 508 509
            return out

        # use slice
        else:
            inputs = {'Input': tensor}
510
            infer_flags = [1 for i in range(len(axes))]
511 512 513 514 515
            attrs = {
                "axes": axes,
                "starts": starts,
                "ends": ends,
                "infer_flags": infer_flags,
516
                'op_role': op_role,
517
            }
518 519 520 521 522 523 524 525 526 527 528 529 530
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                lod_level=tensor.lod_level,
            )
            slice_op = block._insert_op(
                idx,
                type="slice",
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
531
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
532
            return out
C
caozhou 已提交
533

534
    @staticmethod
535
    def insert_split_op(block, idx, tensor, num_or_sections, op_role, axis=0):
536
        """Insert split op into block at the given index."""
537
        helper = LayerHelper('split@RESHARD', **locals())
538 539
        input_shape = tensor.shape
        inputs = {'X': tensor}
540 541 542 543 544 545 546
        attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
        new_shape = []
        for index, item in enumerate(tensor.shape):
            if index != axis:
                new_shape.append(item)
            else:
                new_shape.append(item // num_or_sections)
547 548
        with paddle.static.program_guard(block.program):
            outs = [
549
                block.create_var(
550
                    name=paddle.utils.unique_name.generate_with_ignorable_key(
551 552
                        ".".join([helper.name, 'tmp'])
                    ),
553 554 555 556 557
                    dtype=tensor.dtype,
                    shape=None,
                    lod_level=tensor.lod_level,
                    type=tensor.type,
                    persistable=False,
558 559 560
                    stop_gradient=False,
                )
                for i in range(num_or_sections)
561
            ]
562 563 564
        split_op = block._insert_op(
            idx, type="split", inputs=inputs, outputs={'Out': outs}, attrs=attrs
        )
565
        split_op._set_attr('op_namescope', "/auto_parallel/reshard")
566
        return outs
C
caozhou 已提交
567

568 569
    @staticmethod
    def insert_fill_constant_op(block, idx, op_role):
C
caozhou 已提交
570
        """Insert fill constant op into block at the given index."""
571 572 573
        # to avoid name conflict with framework
        helper = LayerHelper('fill_constant@RESHARD', **locals())
        # use paddle.int64 as dtype
C
caozhou 已提交
574
        with paddle.static.program_guard(block.program):
575
            out = block.create_var(
576
                name=paddle.utils.unique_name.generate_with_ignorable_key(
577 578
                    ".".join([helper.name, 'tmp'])
                ),
579 580 581 582
                dtype=paddle.int64,
                shape=None,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
583 584
                stop_gradient=False,
            )
C
caozhou 已提交
585 586 587 588 589
        inputs = {}
        attrs = {'force_cpu': False}
        attrs['str_value'] = str(int("1"))
        attrs['value'] = int("1")
        attrs['dtype'] = out.dtype
590
        attrs['op_role'] = op_role
591
        paddle.utils.get_shape_tensor_inputs(
592 593 594 595 596 597 598 599 600
            inputs=inputs, attrs=attrs, shape=[0], op_type='fill_constant'
        )
        fillconstant_op = block._insert_op(
            idx,
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
C
caozhou 已提交
601
        out.stop_gradient = True
602
        fillconstant_op._set_attr('op_namescope', "/auto_parallel/reshard")
C
caozhou 已提交
603 604
        return out

605 606 607 608 609 610 611 612 613 614
    @staticmethod
    def insert_allgather_op(block, idx, tensor, ranks, op_role):
        """Insert allgather op into block at the given index."""
        tensor_list = []
        group = new_process_group(ranks)
        idx_offset = 0

        # instant process group before insert allgather op.
        if not group.is_instantiate():
            # insert fill_constant op
615
            fill_constant_out = Inserter.insert_fill_constant_op(
616 617
                block, idx, op_role
            )
618 619 620
            fill_constant_out.stop_gradient = True

            # insert c_allreduce_sum op
621 622 623 624 625 626 627 628
            allreduce_op = block._insert_op(
                idx + 1,
                type="c_allreduce_sum",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
                attrs={
                    'ring_id': 0,
                    'use_calc_stream': True,
629 630 631
                    'op_role': op_role,
                },
            )
632
            allreduce_op._set_attr('op_namescope', "/auto_parallel/reshard")
633
            # insert c_sync_calc_stream op
634 635 636 637 638
            sync_calc_op = block._insert_op(
                idx + 2,
                type="c_sync_calc_stream",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
639 640
                attrs={'op_role': op_role},
            )
641
            sync_calc_op._set_attr('op_namescope', "/auto_parallel/reshard")
642 643 644 645
            idx_offset = 3

        # insert c_allgather op
        op_type = 'c_allgather'
646 647
        # to avoid name conflict with framework
        helper = LayerHelper(op_type + "@RESHARD", **locals())
648
        with paddle.static.program_guard(block.program):
649
            allgather_out = block.create_var(
650
                name=paddle.utils.unique_name.generate_with_ignorable_key(
651 652
                    ".".join([helper.name, 'tmp'])
                ),
653 654 655 656 657
                dtype=tensor.dtype,
                shape=None,
                lod_level=tensor.lod_level,
                type=tensor.type,
                persistable=False,
658 659 660 661 662 663 664 665 666 667 668 669 670 671
                stop_gradient=False,
            )
        allgather_op = block._insert_op(
            idx + idx_offset,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [allgather_out]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'nranks': group.nranks,
                'op_role': op_role,
            },
        )
672
        allgather_op._set_attr('op_namescope', "/auto_parallel/reshard")
673 674 675
        idx_offset += 1

        # insert split op
676 677 678
        split_out = Inserter.insert_split_op(
            block, idx + idx_offset, allgather_out, group.nranks, op_role
        )
679 680 681 682
        idx_offset += 1
        tensor_list.extend(split_out)
        return tensor_list, idx_offset

683 684 685 686 687 688 689 690 691 692 693 694
    @staticmethod
    def insert_c_concat_op(block, idx, tensor, ranks, op_role):
        """Insert c_concat op into block at the given index."""
        group = new_process_group(ranks)
        idx_offset = 0

        # insert c_concat op
        op_type = 'c_concat'
        # to avoid name conflict with framework
        helper = LayerHelper(op_type + "@RESHARD", **locals())
        with paddle.static.program_guard(block.program):
            c_concat_out = block.create_var(
695
                name=paddle.utils.unique_name.generate_with_ignorable_key(
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
                    ".".join([helper.name, 'tmp'])
                ),
                dtype=tensor.dtype,
                shape=None,
                lod_level=tensor.lod_level,
                type=tensor.type,
                persistable=False,
                stop_gradient=False,
            )
        cur_rank = paddle.distributed.get_rank()
        c_concat_op = block._insert_op(
            idx + idx_offset,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [c_concat_out]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                'nranks': group.nranks,
                'op_role': op_role,
                'rank': group.ranks.index(cur_rank) if cur_rank in ranks else 0,
            },
        )
        c_concat_op._set_attr('op_namescope', "/auto_parallel/reshard")
        return c_concat_out

723
    @staticmethod
724 725 726
    def concat_partitions_with_op(
        partition_tensor_list, tensor, partition_index, block, idx, op_role
    ):
727 728
        """Concat the tensors and insert concat op."""
        if not partition_tensor_list:
C
caozhou 已提交
729
            partition_tensor_list.append((tensor, partition_index))
730 731 732 733
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
734 735 736 737 738 739 740
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i][1], partition_index
                )
741 742
                if concat_axis != -1:
                    has_concat = True
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
                    _ = (
                        Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [partition_tensor_list[i][0], tensor],
                            concat_axis,
                            op_role,
                        )
                        if first_order == 0
                        else Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [tensor, partition_tensor_list[i][0]],
                            concat_axis,
                            op_role,
                        )
                    )
760 761
                    partition_tensor_list.pop(i)
                    idx[0] += 1
762 763 764 765 766 767 768 769
                    Inserter.concat_partitions_with_op(
                        partition_tensor_list,
                        _,
                        new_partition,
                        block,
                        idx,
                        op_role,
                    )
770 771 772 773 774 775 776 777 778 779 780 781 782
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append((tensor, partition_index))


class Remover:
    """Remove var and op in the reshard process."""

    @staticmethod
    def remove_no_need_ops(auto_parallel_main_prog, dist_context, rank_id):
        """Remove no need ops in the main program"""
        not_remove_op_ref = [
783 784 785
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
786
        ]
C
caozhou 已提交
787

788 789 790 791
        # NOTE: The nested sub block is not be supported now.
        remove_block_order = []
        for block_idx in Resharder.while_block_info:
            remove_block_order.append(block_idx)
C
caozhou 已提交
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            if block_idx not in remove_block_order:
                remove_block_order.append(block_idx)

        # the sub block should be removed first
        for block_idx in remove_block_order:
            remove_op_idx = []
            block = auto_parallel_main_prog.blocks[block_idx]
            ops = block.ops
            vars = block.vars
            for idx, op in enumerate(ops):
                if op.type == "read":
                    dim_list = []
                    for var_name in op.output_arg_names:
                        dim_list.extend(
                            get_var_with_recursion(
809 810 811
                                var_name, block, auto_parallel_main_prog
                            ).shape
                        )
812 813 814 815 816
                    for i in range(idx, -1, -1):
                        if ops[i].type == "create_py_reader":
                            ops[i]._set_attr("shape_concat", dim_list)
                            break
                    continue
817

818 819 820 821
                # replace the input and output of c_sync_comm_stream op when in pipeline scene.
                if op.type == "c_sync_comm_stream":
                    need_save = []
                    for var_name in op.input_arg_names:
822 823 824 825 826 827 828
                        process_mesh = (
                            dist_context.get_tensor_dist_attr_for_program(
                                get_var_with_recursion(
                                    var_name, block, auto_parallel_main_prog
                                )
                            ).process_mesh
                        )
829
                        if rank_id in process_mesh.process_ids:
830 831 832 833
                            need_save.append(var_name)
                    if not need_save:
                        remove_op_idx.append(idx)
                        continue
834

835 836 837 838
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, need_save)
                    op.desc.set_output(proto.outputs[0].name, need_save)
                    continue
839

840 841 842 843
                # judge the other op whether should be removed.
                op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
                if op_dist_attr is not None:
                    op_process_mesh = op_dist_attr.process_mesh
844
                    if (
845
                        rank_id not in op_process_mesh.process_ids
846 847
                        and op.type not in not_remove_op_ref
                    ):
848 849 850 851 852 853
                        remove_op_idx.append(idx)

            for idx in remove_op_idx[::-1]:
                block._remove_op(idx)

    @staticmethod
854 855 856
    def remove_no_need_vars(
        auto_parallel_main_prog, dist_params_grads, feed_var_names
    ):
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
        """Remove no need vars in the main program"""
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            remove_vars = set()
            ops = block.ops
            vars = block.vars
            need_vars = set()
            for op in ops:
                for var_name in op.input_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
                for var_name in op.output_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
            for var in vars:
                if var not in need_vars:
                    remove_vars.add(var)

            # change dist_params_grads, the optimize op just in block 0.
            if block_idx == 0:
                param_grad_map = {}
                for op in ops:
                    if int(op.attr('op_role')) == int(OpRole.Optimize):
879 880 881 882
                        if (
                            "Param" in op.input_names
                            and "Grad" in op.input_names
                        ):
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
                            param_name = op.input("Param")[0]
                            grad_name = op.input("Grad")[0]
                            param_grad_map[param_name] = grad_name

                need_remove_idx = []
                for idx, item in enumerate(dist_params_grads):
                    if item[0].name not in param_grad_map.keys():
                        need_remove_idx.append(idx)

                for idx in need_remove_idx[::-1]:
                    dist_params_grads.pop(idx)

                idx = 0
                while idx < len(dist_params_grads):
                    param_name = dist_params_grads[idx][0].name
                    grad_name = dist_params_grads[idx][1].name
                    if grad_name != param_grad_map[param_name]:
                        dist_params_grads[idx] = (
901 902 903
                            vars[param_name],
                            vars[param_grad_map[param_name]],
                        )
904 905 906
                    idx += 1

            for var in remove_vars:
907
                if var in feed_var_names:
908
                    continue
909 910 911
                block._remove_var(var)

    @staticmethod
912 913 914
    def remove_no_need_in_main(
        auto_parallel_main_prog, dist_context, rank_id, dist_params_grads
    ):
915
        """Remove no need vars and ops in the main program."""
916 917 918 919 920 921
        Remover.remove_no_need_ops(
            auto_parallel_main_prog, dist_context, rank_id
        )
        Resharder.change_while_op_input_and_output(
            auto_parallel_main_prog, dist_context
        )
922 923 924 925
        # 'feed_var_names' cannot be removed from auto_parallel_main_prog
        feed_var_names = []
        for var in sum(list(dist_context.serial_feed_vars.values()), []):
            feed_var_names.append(var.name)
926 927 928
        Remover.remove_no_need_vars(
            auto_parallel_main_prog, dist_params_grads, feed_var_names
        )
929 930

    @staticmethod
931 932 933
    def remove_no_need_in_startup(
        auto_parallel_main_prog, auto_parallel_startup_prog
    ):
934 935 936 937 938 939
        """Remove no need vars and ops in the startup program."""
        main_input_vars = set()
        main_ops = auto_parallel_main_prog.global_block().ops
        for op in main_ops:
            for var_name in op.input_arg_names:
                main_input_vars.add(var_name)
940

941 942 943 944 945 946 947 948 949
        startup_block = auto_parallel_startup_prog.global_block()
        startup_output_vars = set()
        startup_ops = startup_block.ops
        for op in startup_ops:
            # skip c_sync_comm_stream op
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                startup_output_vars.add(var_name)
950

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
        need_vars = set()
        for var_name in startup_output_vars:
            if var_name in main_input_vars:
                need_vars.add(var_name)

        startup_ops = startup_block.ops
        actual_need_vars = set()
        for idx, op in enumerate(startup_ops):
            is_need_op = False
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                if var_name in need_vars:
                    is_need_op = True
                    break
            if is_need_op:
                for var_name in op.output_arg_names:
                    actual_need_vars.add(var_name)
                for var_name in op.input_arg_names:
                    actual_need_vars.add(var_name)
971

972 973 974 975 976 977
        remove_vars = set()
        for var_name in startup_block.vars:
            if var_name not in actual_need_vars:
                remove_vars.add(var_name)
        for var in remove_vars:
            startup_block._remove_var(var)
978 979

        remove_op_idx = []
980 981 982
        vars = startup_block.vars
        for idx, op in enumerate(startup_block.ops):
            is_no_need_op = False
983
            if op.type == "c_sync_comm_stream":
984
                var_names = []
985
                for var_name in op.input_arg_names:
986 987 988
                    if var_name in vars:
                        var_names.append(var_name)
                if not var_names:
989
                    remove_op_idx.append(idx)
990 991 992 993
                else:
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, var_names)
                    op.desc.set_output(proto.outputs[0].name, var_names)
994
                continue
C
caozhou 已提交
995

996 997 998 999 1000 1001
            for var_name in op.output_arg_names:
                if var_name not in vars:
                    is_no_need_op = True
                    break
            if is_no_need_op:
                remove_op_idx.append(idx)
1002
        for idx in remove_op_idx[::-1]:
1003
            startup_block._remove_op(idx)
C
caozhou 已提交
1004 1005


1006 1007 1008
class Resharder:
    """
    Reshard tensor in the program according to its distributed attribute and corresponding op distributed attribute.
1009

1010 1011 1012 1013 1014 1015 1016 1017
    Args:
        auto_parallel_main_prog (Program): An auto parallel main program.
        auto_parallel_startup_prog (Program): An auto parallel startup program.
        rank_id (int): The process id.
        dist_context (DistributedContext): The distributed context of this rank.
        dist_params_grads (list): The list contains the tuple of param and grad.
        batch_size (int): The batch size. Default: None.
    """
1018

1019 1020
    while_block_info = {}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    def __init__(
        self,
        auto_parallel_main_prog,
        auto_parallel_startup_prog,
        rank_id,
        dist_context,
        dist_params_grads,
        batch_size=None,
    ):
        assert isinstance(auto_parallel_main_prog, Program), (
            "The type of auto_parallel_main_prog should be Program, "
            "but got {}.".format(type(auto_parallel_main_prog))
        )
1034
        if auto_parallel_startup_prog is not None:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
            assert isinstance(auto_parallel_main_prog, Program), (
                "The type of auto_parallel_startup_prog should be Program or None, "
                "but got {}.".format(type(auto_parallel_startup_prog))
            )
        assert isinstance(
            rank_id, int
        ), "The type of rank_id should be int, " "but got {}.".format(
            type(rank_id)
        )
        assert isinstance(dist_context, DistributedContext), (
            "The type of dist_context should be DistributedContext, "
            "but got {}.".format(type(dist_context))
        )
1048

1049
        if batch_size is not None:
1050 1051 1052 1053 1054
            assert isinstance(
                batch_size, int
            ), "The type of batch_size should be int, " "but got {}.".format(
                type(batch_size)
            )
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

        self._auto_parallel_main_prog = auto_parallel_main_prog
        self._auto_parallel_startup_prog = auto_parallel_startup_prog
        self._rank_id = rank_id
        self._dist_context = dist_context
        self._dist_params_grads = dist_params_grads
        self._batch_size = batch_size
        self._has_sent = {}
        self._has_recv = {}
        self._has_allgather = {}
1065 1066
        # to avoid reshard repeatly
        self._has_resharded = {}
1067

1068 1069 1070
    @property
    def auto_parallel_main_prog(self):
        return self._auto_parallel_main_prog
1071

1072 1073 1074
    @property
    def auto_parallel_startup_prog(self):
        return self._auto_parallel_startup_prog
1075

1076 1077 1078
    @property
    def rank_id(self):
        return self._rank_id
1079

1080 1081 1082
    @property
    def dist_context(self):
        return self._dist_context
1083

1084 1085 1086
    @property
    def dist_params_grads(self):
        return self._dist_params_grads
1087

1088 1089 1090
    @property
    def batch_size(self):
        return self._batch_size
1091

1092 1093 1094
    @property
    def has_sent(self):
        return self._has_sent
1095

1096 1097 1098
    @property
    def has_recv(self):
        return self._has_recv
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    @property
    def has_allgather(self):
        return self._has_allgather

    @staticmethod
    def compute_partition_shape(complete_shape, dims_mapping, process_shape):
        """Compute the shape of partition."""
        partition_shape = []
        for idx, item in enumerate(complete_shape):
            if dims_mapping[idx] == -1:
                partition_shape.append(item)
            else:
                partition_shape.append(item // process_shape[dims_mapping[idx]])
1113

1114
        return partition_shape
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    @staticmethod
    def compute_process_index(process, process_group, process_shape):
        """Compute the index of process_shape corresponding to the process."""
        relative_process = process_group.index(process)
        process_index = []
        product = reduce(lambda x, y: x * y, process_shape)

        for i in range(len(process_shape)):
            idx = relative_process // (product // process_shape[i])
            product = product // process_shape[i]
1126 1127 1128
            relative_process = (
                relative_process - relative_process // product * product
            )
1129 1130 1131 1132 1133
            process_index.append(idx)

        return process_index

    @staticmethod
1134 1135 1136
    def compute_partition_index(
        process, complete_shape, dims_mapping, process_shape, process_group
    ):
1137 1138
        """Compute the partition index in complete tensor."""
        partition_shape = Resharder.compute_partition_shape(
1139 1140 1141 1142 1143
            complete_shape, dims_mapping, process_shape
        )
        process_index = Resharder.compute_process_index(
            process, process_group, process_shape
        )
1144 1145 1146 1147 1148 1149
        partition_index = []

        for i in range(len(complete_shape)):
            if dims_mapping[i] == -1:
                partition_index.append([0, partition_shape[i]])
            else:
1150 1151 1152 1153 1154 1155 1156
                partition_index.append(
                    [
                        process_index[dims_mapping[i]] * partition_shape[i],
                        (process_index[dims_mapping[i]] + 1)
                        * partition_shape[i],
                    ]
                )
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

        return partition_index

    @staticmethod
    def compute_concat_info(partition_index_x, partition_index_y):
        """Judge whether two partition can be concatenated and compute concatenated partition index."""
        differ_count = 0
        concat_axis = -1
        first_order = 0
        new_partition = []

        for idx, item in enumerate(partition_index_x):
            if item != partition_index_y[idx]:
                differ_count += 1
1171 1172 1173 1174
                if (
                    item[1] == partition_index_y[idx][0]
                    and item[0] < partition_index_y[idx][1]
                ):
1175 1176
                    concat_axis = idx
                    new_partition.append([item[0], partition_index_y[idx][1]])
1177 1178 1179 1180
                elif (
                    item[0] == partition_index_y[idx][1]
                    and item[1] > partition_index_y[idx][0]
                ):
1181 1182 1183 1184 1185
                    first_order = 1
                    concat_axis = idx
                    new_partition.append([partition_index_y[idx][0], item[1]])
            else:
                new_partition.append(item)
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        if differ_count == 1:
            return concat_axis, first_order, new_partition
        else:
            return -1, first_order, new_partition

    @staticmethod
    def compute_complete_shape(slice_shape, process_shape, dims_mapping):
        """compute the complete shape of the slice tensor  with its process mesh and dims mapping"""
        complete_shape = []
        for idx, item in enumerate(slice_shape):
            if dims_mapping[idx] == -1:
                complete_shape.append(item)
            else:
                complete_shape.append(item * process_shape[dims_mapping[idx]])
        return complete_shape
C
caozhou 已提交
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    @staticmethod
    def concat_partitions(partition_index_list, partition_index):
        """Concat the given partitions without inserting concat op."""
        if not partition_index_list:
            partition_index_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_index_list):
                concat_axis, _, new_partition = Resharder.compute_concat_info(
1213 1214
                    partition_index_list[i], partition_index
                )
1215 1216 1217
                if concat_axis != -1:
                    has_concat = True
                    partition_index_list.pop(i)
1218 1219 1220
                    Resharder.concat_partitions(
                        partition_index_list, new_partition
                    )
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
                    break
                i += 1
            if not has_concat:
                partition_index_list.append(partition_index)

    @staticmethod
    def change_while_op_input_and_output(auto_parallel_main_prog, dist_context):
        """Change while op input and output after the corresponding sub block ops removed"""
        for sub_block_idx in Resharder.while_block_info:
            sub_block = auto_parallel_main_prog.blocks[sub_block_idx]
            parent_while_op_id = Resharder.while_block_info[sub_block_idx][
1232 1233
                "op_id"
            ]
1234 1235 1236 1237 1238 1239 1240
            parent_block = auto_parallel_main_prog.blocks[sub_block.parent_idx]

            sub_block_op_inputs = set()
            sub_block_op_outputs = []
            for op in sub_block.ops:
                # skip the input and output of operators inserted in the reshard phase
                dist_op = dist_context.get_dist_op_for_program(op)
1241 1242 1243 1244 1245 1246
                if (
                    dist_op
                    or (op.type == "slice" and not dist_op)
                    or (op.type == "split" and not dist_op)
                    or (op.type == "assign" and not dist_op)
                ):
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
                    for var_name in op.output_arg_names:
                        if var_name not in sub_block_op_outputs:
                            sub_block_op_outputs.append(var_name)
                    for var_name in op.input_arg_names:
                        sub_block_op_inputs.add(var_name)

            # find the while op
            while_op = None
            for op in parent_block.ops:
                if op.desc.id() == parent_while_op_id and op.type == "while":
                    while_op = op
                    break

1260 1261
            if while_op is None:
                continue
1262 1263 1264 1265 1266 1267 1268 1269

            # find the actual input and output of while op
            proto = OpProtoHolder.instance().get_op_proto(while_op.type)
            new_X = []
            for var_name in while_op.input("X"):
                if var_name in sub_block_op_inputs:
                    new_X.append(var_name)
            assert new_X
1270
            new_X.sort()
1271 1272 1273 1274 1275
            while_op.desc.set_input(proto.inputs[0].name, new_X)

            new_Out = []
            for var_name in while_op.output("Out"):
                for output_name in sub_block_op_outputs[::-1]:
1276
                    if output_name.find(var_name) != -1 and (
1277 1278 1279
                        len(var_name) == len(output_name)
                        or "@RESHARD" in output_name
                    ):
1280 1281
                        if output_name not in new_Out:
                            new_Out.append(output_name)
1282 1283 1284 1285 1286 1287
            assert new_Out
            while_op.desc.set_output(proto.outputs[0].name, new_Out)

    def is_overlapped(self, shape_x, shape_y):
        """Judge whether two partitions intersect on the specified dimension."""
        overlapped = False
1288 1289 1290
        if (shape_y[0] <= shape_x[0] < shape_y[1]) or (
            shape_x[0] <= shape_y[0] < shape_x[1]
        ):
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            overlapped = True
        return overlapped

    def is_unshard(self, dims_mapping):
        for dim in dims_mapping:
            if dim != -1:
                return False
        return True

    def is_special_op(self, op):
1301
        global _g_special_ops, _g_gradient_clip_ops
Z
zhaoyingli 已提交
1302 1303
        if op.type in _g_special_ops:
            return True
1304
        if is_gradient_clip_op(op) and op.type in _g_gradient_clip_ops:
1305
            return True
Z
zhaoyingli 已提交
1306 1307
        return False

1308 1309
    def is_condition_replicative(self, op):
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
1310 1311 1312 1313 1314

        if op.type == "while":
            input_cond = op.input("Condition")
        elif op.type == "conditional_block":
            input_cond = op.input("Cond")
1315 1316

        # the dims mapping of condition tensor should be replicative
1317
        for var_name in input_cond:
1318 1319 1320
            var = get_var_with_recursion(
                var_name, sub_block, self.auto_parallel_main_prog
            )
1321 1322 1323 1324 1325 1326
            dist_tensor = self.dist_context.get_dist_tensor_for_program(var)
            tensor_dist_attr = dist_tensor.dist_attr
            var_dims_mapping = tensor_dist_attr.dims_mapping
            for dim in var_dims_mapping:
                if dim != -1:
                    return False
1327

1328 1329
        return True

1330
    def need_reshard(self, dist_tensor, dist_attr, op_input=True, dist_op=None):
1331 1332 1333 1334 1335
        """Judge the tensor whether needs to be resharded."""
        is_reshard = False
        tensor_dist_attr = dist_tensor.dist_attr
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        tensor_process_mesh = tensor_dist_attr.process_mesh
1336 1337 1338 1339

        # dist_attr is [process_mesh, dims_mapping] and process_mesh is not a union
        op_process_mesh = dist_attr[0]

1340
        if op_input:
1341
            op_input_dims_mapping = dist_attr[1]
1342
            if all(
1343 1344 1345 1346 1347 1348 1349
                x
                for x in [
                    tensor_dims_mapping,
                    tensor_process_mesh,
                    op_input_dims_mapping,
                    op_process_mesh,
                ]
1350
            ):
1351
                # judge whether need reshard by dims_mapping
1352
                if tensor_dims_mapping != op_input_dims_mapping:
1353 1354 1355 1356
                    if (
                        tensor_process_mesh
                        not in self.dist_context.process_meshes
                    ):
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
                        # assert whether -1 when union.
                        for item in tensor_dims_mapping:
                            if item != -1:
                                raise ValueError(
                                    "The dim must be -1 when tensor process mesh is a union."
                                )
                        # tensor process_mesh: [0, 1, 2, 3], dims_mapping: [-1, -1]
                        # op process_mesh: [4, 5], dims_mapping: [0, -1]
                        # reshard is not supported such as above
                        if not is_reshard:
                            return is_reshard
1368
                        else:
1369 1370 1371 1372 1373 1374 1375 1376
                            raise ValueError(
                                "it is not supported that tensor process mesh is a union and needs reshard."
                            )
                    is_reshard = True

                # judge whether need reshard by process_mesh
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1377
        else:
1378
            op_output_dims_mapping = dist_attr[1]
1379
            if all(
1380 1381 1382 1383 1384 1385 1386
                x
                for x in [
                    tensor_dims_mapping,
                    tensor_process_mesh,
                    op_output_dims_mapping,
                    op_process_mesh,
                ]
1387
            ):
1388 1389 1390 1391
                if tensor_dims_mapping != op_output_dims_mapping:
                    raise ValueError(
                        "It is not supported that tensor dims mapping is different from op output dims mapping."
                    )
1392 1393
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1394 1395 1396 1397

        return is_reshard

    def get_op_process_meshes(self, op):
1398
        """Get sub process meshes of the given op if op process mesh is a union."""
1399 1400 1401
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        op_process_mesh = dist_op.dist_attr.process_mesh
1402

1403
        for process_mesh in self.dist_context.process_meshes:
1404 1405 1406 1407 1408
            if set(process_mesh.process_ids) & (
                set(op_process_mesh.process_ids)
            ) and len(process_mesh.process_ids) < len(
                op_process_mesh.process_ids
            ):
1409 1410 1411 1412 1413 1414 1415 1416
                process_meshes.append(process_mesh)

        # it means the process mesh is not a union when process meshes is null
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        return process_meshes

1417
    def find_op_desc_seq(self, dist_tensor, dist_attr, serial=False):
1418 1419 1420 1421 1422
        """
        Find the op description sequence to reshard the source tensor for matching the op requirement.

        Args:
            dist_tensor (DistributedTensor): A distributed tensor.
1423 1424
            dist_attr (list): A list contains process_mesh and dims_mapping such as [process_mesh, dims_mapping].
            serial (bool): If serial is true, the dist tensor and dist op come from serial program. Otherwise, they come from auto program.
1425 1426 1427 1428 1429 1430 1431 1432

        Returns:
            Dict, the dict represents the required op description sequence corresponding to process, The key of dict is
            process and value is a list containing op description.
        """
        tensor_dist_attr = dist_tensor.dist_attr
        source_tensor = dist_tensor.serial_tensor
        tensor_name = source_tensor.name
1433

1434 1435
        source_dims_mapping = tensor_dist_attr.dims_mapping
        source_process_mesh = tensor_dist_attr.process_mesh
1436 1437
        source_process_group = source_process_mesh.process_ids
        source_process_shape = source_process_mesh.shape
1438

1439 1440
        target_process_mesh = dist_attr[0]
        target_dims_mapping = dist_attr[1]
1441 1442
        target_process_group = target_process_mesh.process_ids
        target_process_shape = target_process_mesh.shape
1443 1444

        if source_tensor.shape[0] < 0:
1445
            assert source_tensor.shape[0] == -1
1446 1447 1448 1449
            new_shape = list(source_tensor.shape)
            new_shape[0] = self.batch_size
            source_tensor.desc.set_shape(new_shape)

1450 1451 1452 1453 1454 1455 1456
        complete_shape = (
            Resharder.compute_complete_shape(
                source_tensor.shape, source_process_shape, source_dims_mapping
            )
            if not serial
            else source_tensor.shape
        )
1457 1458 1459
        op_desc_seq = {}

        # TODO: if the target process group has the same process with source process group
1460 1461 1462
        if set(target_process_group).intersection(
            set(source_process_group)
        ) and set(target_process_group).difference(set(source_process_group)):
1463 1464 1465 1466 1467
            pass

        elif target_process_group != source_process_group:
            partition_process_mapping_list = []
            for source_process in source_process_group:
1468
                # get partition index of source process
1469 1470 1471 1472 1473 1474 1475
                source_partition_index = Resharder.compute_partition_index(
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1476
                if not partition_process_mapping_list:
1477
                    # the item in partition_process_mapping_list is source_partition_index, which processes and whether has been used
1478
                    partition_process_mapping_list.append(
1479 1480
                        [source_partition_index, [source_process], [False]]
                    )
1481
                else:
1482 1483 1484 1485 1486 1487 1488 1489 1490
                    partition_list = [
                        item[0] for item in partition_process_mapping_list
                    ]
                    process_list = [
                        item[1] for item in partition_process_mapping_list
                    ]
                    has_used = [
                        item[2] for item in partition_process_mapping_list
                    ]
1491

1492 1493 1494 1495 1496
                    if partition_list.count(source_partition_index) == 1:
                        index = partition_list.index(source_partition_index)
                        process_list[index].append(source_process)
                        has_used[index].append(False)
                    else:
1497
                        partition_process_mapping_list.append(
1498 1499
                            [source_partition_index, [source_process], [False]]
                        )
1500 1501

            for target_process in target_process_group:
1502
                # has_sent means the source_partition_index has been sent to target_process
1503 1504
                has_sent = []
                target_partition_index = Resharder.compute_partition_index(
1505 1506 1507 1508 1509 1510
                    target_process,
                    complete_shape,
                    target_dims_mapping,
                    target_process_shape,
                    target_process_group,
                )
1511 1512 1513 1514
                partition_index_list = []
                all_partition_index_list = []
                for source_process in source_process_group:
                    source_partition_index = Resharder.compute_partition_index(
1515 1516 1517 1518 1519 1520
                        source_process,
                        complete_shape,
                        source_dims_mapping,
                        source_process_shape,
                        source_process_group,
                    )
1521
                    to_send_process = None
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
                    if (
                        all(
                            _
                            for _ in list(
                                map(
                                    self.is_overlapped,
                                    source_partition_index,
                                    target_partition_index,
                                )
                            )
                        )
                        and source_partition_index not in has_sent
                    ):
1535 1536 1537 1538 1539 1540 1541 1542 1543
                        idx = [
                            item[0] for item in partition_process_mapping_list
                        ].index(source_partition_index)
                        has_used = [
                            item[2] for item in partition_process_mapping_list
                        ][idx]
                        process_list = [
                            item[1] for item in partition_process_mapping_list
                        ][idx]
1544 1545 1546 1547 1548 1549 1550
                        i = 0
                        while i < len(has_used):
                            if not has_used[i]:
                                to_send_process = process_list[i]
                                has_used[i] = True
                                break
                            i += 1
1551

1552
                        if i == len(has_used):
1553
                            has_used = [False for x in has_used]
1554 1555
                            to_send_process = process_list[0]
                            has_used[0] = True
1556 1557 1558
                        assert (
                            to_send_process is not None
                        ), "Failed to find the send process."
1559 1560 1561 1562 1563 1564 1565 1566

                        if to_send_process not in op_desc_seq.keys():
                            op_desc_seq[to_send_process] = []
                        if target_process not in op_desc_seq.keys():
                            op_desc_seq[target_process] = []
                        all_partition_index_list.append(source_partition_index)

                        # append send and recv op desc
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
                        is_bool = dist_tensor.serial_tensor.dtype == paddle.bool
                        send_op_desc = SendOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
                        recv_op_desc = RecvOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
1580 1581 1582
                        op_desc_seq[to_send_process].append(send_op_desc)
                        op_desc_seq[target_process].append(recv_op_desc)
                        has_sent.append(source_partition_index)
1583 1584 1585
                        Resharder.concat_partitions(
                            partition_index_list, source_partition_index
                        )
1586 1587 1588

                # append concat op desc
                op_desc_seq[target_process].append(
1589 1590
                    ConcatOpDesc(all_partition_index_list)
                )
1591 1592 1593 1594 1595 1596

                # append slice op desc
                slice_starts = []
                slice_ends = []
                slices_axes = []
                concatenated_partition_index = partition_index_list[0]
1597 1598
                to_slice_tensor_shape = []

1599
                for idx, item in enumerate(concatenated_partition_index):
1600 1601 1602
                    slice_starts.append(
                        target_partition_index[idx][0] - item[0]
                    )
1603 1604
                    slice_ends.append(target_partition_index[idx][1] - item[0])
                    slices_axes.append(idx)
1605 1606
                    to_slice_tensor_shape.append(item[1] - item[0])

1607
                op_desc_seq[target_process].append(
1608 1609 1610 1611 1612 1613 1614
                    SliceOpDesc(
                        slice_starts,
                        slice_ends,
                        slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                )
1615

1616
        # In the same process group, it will use allgahther and slice op.
1617
        else:
1618
            # NOTE: It just supports even partition scene.
1619 1620 1621 1622 1623
            partition_index_list = []
            all_partition_index_list = []
            process_index = []
            for source_process in source_process_group:
                source_partition_index = Resharder.compute_partition_index(
1624 1625 1626 1627 1628 1629
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1630 1631
                if source_partition_index not in partition_index_list:
                    partition_index_list.append(source_partition_index)
1632 1633 1634 1635 1636 1637 1638 1639
                    process_index.append(
                        [
                            [
                                source_process,
                            ],
                            source_partition_index,
                        ]
                    )
1640
                else:
1641 1642 1643
                    process_index[
                        partition_index_list.index(source_partition_index)
                    ][0].append(source_process)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

            for i in range(len(process_index[0][0])):
                group = []
                for j in range(len(process_index)):
                    group.append(process_index[j][0][i])
                    if i == 0:
                        all_partition_index_list.append(process_index[j][1])
                for process in group:
                    # append slice op desc
                    slice_starts = []
                    slice_ends = []
                    slices_axes = []
                    target_partition_index = Resharder.compute_partition_index(
1657 1658 1659 1660 1661 1662
                        process,
                        complete_shape,
                        target_dims_mapping,
                        target_process_shape,
                        target_process_group,
                    )
1663 1664 1665 1666 1667
                    for idx, item in enumerate(target_partition_index):
                        slice_starts.append(item[0])
                        slice_ends.append(item[1])
                        slices_axes.append(idx)

1668
                    to_slice_tensor_shape = dist_tensor.global_sizes()
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
                    slice_op_desc = SliceOpDesc(
                        starts=slice_starts,
                        ends=slice_ends,
                        axes=slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                    allgather_shape = (
                        None
                        if not serial
                        else dist_tensor.local_sizes(rank=process)
                    )
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
                    # c_concat pass
                    if (
                        target_dims_mapping.count(-1)
                        == len(target_dims_mapping)
                        and source_dims_mapping[:-1].count(-1)
                        == len(source_dims_mapping[:-1])
                        and source_dims_mapping[-1] != -1
                    ):
                        op_desc_seq[process] = [
                            AllGatherConcatOpDesc(
                                group=group, shape=allgather_shape
                            )
1692
                        ]
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
                    else:
                        op_desc_seq[process] = (
                            [
                                AllGatherOpDesc(
                                    group=group,
                                    shape=allgather_shape,
                                    is_bool=(
                                        source_tensor.dtype == paddle.bool
                                    ),
                                ),
                                ConcatOpDesc(
                                    partition_index_list=all_partition_index_list
                                ),
                                slice_op_desc,
                            ]
                            if len(group) > 1
                            else [slice_op_desc]
                        )
1711 1712 1713

        return op_desc_seq

1714 1715 1716
    def parse_op_desc(
        self, block, op_desc_seq, var_name, reshard_op, dist_attr
    ):
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
        """Parse op desc sequence and insert op in the block"""
        tensor_list = []
        partition_tensor_list = []
        if self.rank_id not in op_desc_seq.keys():
            return
        op_desc_list = op_desc_seq[self.rank_id]

        idx = None
        for index, op in list(enumerate(block.ops)):
            if op.desc.id == reshard_op.desc.id:
                idx = index
                break
1729 1730 1731 1732 1733
        assert (
            idx is not None
        ), "The op for reshard cannot be found in the rank {} program.".format(
            self.rank_id
        )
1734 1735

        matched_op = block.ops[idx]
1736 1737 1738
        source_tensor = get_var_with_recursion(
            var_name, block, self.auto_parallel_main_prog
        )
1739 1740 1741 1742
        for op_desc in op_desc_list:
            if isinstance(op_desc, AllGatherOpDesc):  # noqa: F401
                if var_name not in self.has_allgather.keys():
                    self.has_allgather[var_name] = []
1743 1744 1745
                if not self.has_allgather[var_name] or op_desc.group not in [
                    x[0] for x in self.has_allgather[var_name]
                ]:
1746 1747 1748
                    if op_desc.is_bool:
                        # for bool data allgather, cast to int64 -> allgather -> cast bool
                        out_cast = Inserter.insert_cast_op(
1749 1750 1751 1752 1753 1754
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
1755
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1756 1757 1758 1759 1760 1761
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1762 1763 1764 1765
                        idx += idx_offset
                        tensor_name_list = []
                        for var in tensor_list:
                            out_cast = Inserter.insert_cast_op(
1766 1767 1768 1769 1770 1771
                                block,
                                idx,
                                var,
                                reshard_op.attr('op_role'),
                                paddle.bool,
                            )
1772 1773 1774
                            tensor_name_list.append(out_cast.name)
                            idx += 1
                        self.has_allgather[var_name].append(
1775 1776
                            [op_desc.group, tensor_name_list]
                        )
1777 1778
                    else:
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1779 1780 1781 1782 1783 1784
                            block,
                            idx,
                            source_tensor,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1785 1786 1787
                        idx += idx_offset
                        tensor_name_list = [var.name for var in tensor_list]
                        self.has_allgather[var_name].append(
1788 1789
                            [op_desc.group, tensor_name_list]
                        )
1790 1791 1792 1793
                else:
                    for item in self.has_allgather[var_name]:
                        if op_desc.group == item[0]:
                            tensor_list = [
C
caozhou 已提交
1794
                                get_var_with_recursion(
1795 1796 1797 1798
                                    var_name,
                                    block,
                                    self.auto_parallel_main_prog,
                                )
1799 1800 1801
                                for var_name in item[1]
                            ]
                            break
1802 1803 1804
                assert (
                    tensor_list
                ), "The result of parsing allgather op should not be None."
1805 1806 1807 1808 1809

            elif isinstance(op_desc, SendOpDesc):
                if var_name not in self.has_sent.keys():
                    self.has_sent[var_name] = []
                if op_desc.dst not in self.has_sent[var_name]:
1810 1811
                    if op_desc.is_bool:
                        out_cast = Inserter.insert_cast_op(
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
                        Inserter.insert_send_op(
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1826 1827
                        idx += 2
                    else:
1828 1829 1830 1831 1832 1833 1834 1835
                        Inserter.insert_send_op(
                            block,
                            idx,
                            source_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1836
                        idx += 1
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
                    self.has_sent[var_name].append(op_desc.dst)

            elif isinstance(op_desc, RecvOpDesc):
                if var_name not in self.has_recv.keys():
                    self.has_recv[var_name] = {}
                if op_desc.src not in self.has_recv[var_name].keys():
                    partition_index = op_desc.partition_index
                    shape = []
                    for index in partition_index:
                        shape.append(index[1] - index[0])
1847 1848 1849 1850 1851 1852 1853
                    if op_desc.is_bool:
                        # for bool data, recv int64 -> cast to bool
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=paddle.int64,
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1864
                        out_cast = Inserter.insert_cast_op(
1865 1866 1867 1868 1869 1870
                            block,
                            idx + 1,
                            recv_tensor,
                            reshard_op.attr('op_role'),
                            paddle.bool,
                        )
1871 1872 1873 1874 1875 1876 1877 1878 1879
                        tensor_list.append(out_cast)
                        idx += 2
                        self.has_recv[var_name][op_desc.src] = out_cast
                    else:
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=source_tensor.dtype,
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1890 1891 1892 1893 1894

                        # for lod tensor, need reset lod after received
                        if recv_tensor.lod_level != 0:
                            set_lod = False
                            # use data lod to reset tensor lod
1895 1896 1897
                            for (
                                tmp_block
                            ) in self.auto_parallel_main_prog.blocks:
1898 1899
                                for tmp_var_name in tmp_block.vars:
                                    tmp_var = tmp_block.vars[tmp_var_name]
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
                                    if (
                                        tmp_var.is_data
                                        and tmp_var.lod_level
                                        == recv_tensor.lod_level
                                    ):
                                        reset_lod_out = (
                                            Inserter.insert_reset_lod_op(
                                                block,
                                                idx + 1,
                                                recv_tensor,
                                                tmp_var,
                                                reshard_op.attr('op_role'),
                                            )
                                        )
1914 1915 1916
                                        tensor_list.append(reset_lod_out)
                                        idx += 2
                                        self.has_recv[var_name][
1917 1918
                                            op_desc.src
                                        ] = reset_lod_out
1919 1920 1921 1922 1923 1924 1925 1926 1927
                                        set_lod = True
                                        break
                                if set_lod:
                                    break
                            assert set_lod is True
                        else:
                            tensor_list.append(recv_tensor)
                            idx += 1
                            self.has_recv[var_name][op_desc.src] = recv_tensor
1928 1929 1930 1931 1932 1933 1934 1935
                else:
                    tensor_list.append(self.has_recv[var_name][op_desc.src])

            elif isinstance(op_desc, ConcatOpDesc):
                partition_index_list = op_desc.partition_index_list
                idx_list = [idx]
                for index, tensor in enumerate(tensor_list):
                    Inserter.concat_partitions_with_op(
1936 1937 1938 1939 1940 1941 1942
                        partition_tensor_list,
                        tensor,
                        partition_index_list[index],
                        block,
                        idx_list,
                        reshard_op.attr('op_role'),
                    )
1943 1944
                idx = idx_list[0]

1945
            elif isinstance(op_desc, (SliceOpDesc, AllGatherConcatOpDesc)):
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
                target_tensor = None
                if isinstance(op_desc, SliceOpDesc):
                    assert (
                        len(partition_tensor_list) == 1
                        or not partition_tensor_list
                    )
                    to_slice_tensor = (
                        partition_tensor_list[0][0]
                        if len(partition_tensor_list) == 1
                        else source_tensor
                    )
                    new_name = unique_name.generate(var_name + "@RESHARD")
                    target_tensor = Inserter.insert_slice_op(
                        block,
                        idx,
                        to_slice_tensor,
                        starts=op_desc.starts,
                        ends=op_desc.ends,
                        axes=op_desc.axes,
                        new_var_name=new_name,
                        op_role=reshard_op.attr('op_role'),
                    )
                else:
                    target_tensor = Inserter.insert_c_concat_op(
                        block,
                        idx,
                        source_tensor,
                        op_desc.group,
                        reshard_op.attr('op_role'),
                    )
1976

1977
                assert target_tensor is not None
1978 1979 1980
                process_mesh = dist_attr[0]
                dims_mapping = dist_attr[1]

1981
                tensor_attr = TensorDistAttr()
1982 1983 1984
                tensor_attr.dims_mapping = dims_mapping
                tensor_attr.process_mesh = process_mesh
                self.dist_context.set_tensor_dist_attr_for_program(
1985 1986
                    target_tensor, tensor_attr
                )
1987

1988
                if matched_op.type == "while":
1989
                    # var_reshard_mapping means the while op input need be changed to
1990 1991 1992 1993 1994 1995
                    if (
                        "var_reshard_mapping"
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ].keys()
                    ):
1996
                        Resharder.while_block_info[op.attr("sub_block").id][
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
                            "var_reshard_mapping"
                        ] = {}
                    if (
                        var_name
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ]["var_reshard_mapping"].keys()
                    ):
                        Resharder.while_block_info[op.attr("sub_block").id][
                            "var_reshard_mapping"
                        ][var_name] = []
2008
                    Resharder.while_block_info[op.attr("sub_block").id][
2009 2010
                        "var_reshard_mapping"
                    ][var_name].append([dist_attr, target_tensor.name])
2011 2012 2013

                # rename op input name according to new name
                for op in block.ops:
2014 2015
                    # just for while op
                    while_op_X_append = []
2016
                    for name in op.input_arg_names:
2017 2018 2019
                        op_dist_attr = (
                            self.dist_context.get_op_dist_attr_for_program(op)
                        )
2020 2021
                        if name == var_name and op_dist_attr is not None:
                            if op.desc.id() == matched_op.desc.id():
2022
                                if matched_op.type == "while":
2023 2024 2025
                                    op.desc._rename_input(
                                        name, target_tensor.name
                                    )
2026 2027 2028
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
2029 2030 2031 2032 2033
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
2034
                                    op_dist_attr.set_input_dist_attr(
2035 2036
                                        new_name, op_input_dist_attr
                                    )
2037
                                    op_dist_attr.set_input_dims_mapping(
2038 2039
                                        new_name, dims_mapping
                                    )
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
                                    # if (
                                    #     old_name
                                    #     in op_dist_attr._inputs_dist_attrs
                                    # ):
                                    #     op_dist_attr.del_input_dist_attr(
                                    #         old_name
                                    #     )
                                    op_dist_attr.set_input_dims_mapping(
                                        new_name, dims_mapping
                                    )
2050 2051 2052 2053
                                    while_op_X_append.append(new_name)
                                    continue
                                else:
                                    op.desc._rename_input(
2054 2055
                                        name, target_tensor.name
                                    )
2056 2057 2058
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
2059 2060 2061 2062 2063
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
2064
                                    op_dist_attr.set_input_dist_attr(
2065 2066
                                        new_name, op_input_dist_attr
                                    )
2067
                                    op_dist_attr.set_input_dims_mapping(
2068 2069
                                        new_name, dims_mapping
                                    )
2070 2071 2072 2073
                                    # op_dist_attr.del_input_dist_attr(old_name)
                                    op_dist_attr.set_input_dims_mapping(
                                        new_name, dims_mapping
                                    )
2074
                                    continue
2075 2076

                            op_process_mesh = op_dist_attr.process_mesh
2077 2078 2079
                            op_input_dims_mapping = (
                                op_dist_attr.get_input_dims_mapping(var_name)
                            )
2080
                            # NOTE: For op whose process mesh is a union, its input will not be renamed by other op reshard result now which means that it will have more reshard operation.
2081 2082 2083 2084
                            if (
                                op_process_mesh == process_mesh
                                and op_input_dims_mapping == dims_mapping
                            ):
2085
                                op.desc._rename_input(name, target_tensor.name)
2086 2087 2088
                                old_name = name
                                new_name = target_tensor.name
                                assert old_name != new_name
2089 2090 2091
                                op_input_dist_attr = (
                                    op_dist_attr.get_input_dist_attr(old_name)
                                )
2092
                                op_dist_attr.set_input_dist_attr(
2093 2094
                                    new_name, op_input_dist_attr
                                )
2095
                                op_dist_attr.set_input_dims_mapping(
2096 2097
                                    new_name, dims_mapping
                                )
2098 2099 2100 2101
                                # op_dist_attr.del_input_dist_attr(old_name)
                                op_dist_attr.set_input_dims_mapping(
                                    new_name, dims_mapping
                                )
2102

2103 2104 2105
                    # for while op, the input X should reset
                    if while_op_X_append:
                        proto = OpProtoHolder.instance().get_op_proto(op.type)
2106 2107 2108 2109
                        op.desc.set_input(
                            proto.inputs[0].name,
                            op.input("X") + while_op_X_append,
                        )
2110

2111
    def _get_subblock_input_attrs(self, op, var_name):
2112
        # NOTE: Multi while loop is not supported
2113
        assert op.type in _g_subblock_ops
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        input_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.input_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    input_dims_mapping = dist_attr.get_input_dims_mapping(
2127 2128
                        var_name
                    )
2129 2130
                    has_exist = False
                    for input_attr in input_attrs:
2131 2132 2133 2134
                        if (
                            process_mesh == input_attr[0]
                            and input_dims_mapping == input_attr[1]
                        ):
2135 2136 2137 2138 2139 2140
                            has_exist = True
                            break
                    if not has_exist:
                        input_attrs.append([process_mesh, input_dims_mapping])
        return input_attrs

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
    def _get_subblock_output_attrs(self, op, var_name):
        # NOTE: Multi while loop is not supported
        assert op.type in _g_subblock_ops
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        output_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.output_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    output_dims_mapping = dist_attr.get_output_dims_mapping(
                        var_name
                    )
                    has_exist = False
                    for output_attr in output_attrs:
                        if (
                            process_mesh == output_attrs[0]
                            and output_dims_mapping == output_attrs[1]
                        ):
                            has_exist = True
                            break
                    if not has_exist:
                        output_attrs.append([process_mesh, output_dims_mapping])
        return output_attrs

2171 2172 2173 2174 2175 2176
    def _get_common_op_input_attrs(self, op, var_name):
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        dist_attr = dist_op.dist_attr
        op_process_mesh = dist_attr.process_mesh
        for process_mesh in self.dist_context.process_meshes:
2177 2178 2179 2180 2181
            if set(process_mesh.process_ids) & (
                set(op_process_mesh.process_ids)
            ) and len(process_mesh.process_ids) < len(
                op_process_mesh.process_ids
            ):
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
                process_meshes.append(process_mesh)

        # it means that the process mesh is not a union when process meshes is none
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        input_dims_mapping = dist_attr.get_input_dims_mapping(var_name)
        input_attrs = []
        for process_mesh in process_meshes:
            input_attrs.append([process_mesh, input_dims_mapping])

        return input_attrs

    def get_op_input_attrs(self, op, var_name):
        op_input_attrs = []
2197

2198 2199
        if op.type in _g_subblock_ops:
            op_input_attrs = self._get_subblock_input_attrs(op, var_name)
2200 2201 2202 2203 2204
            if not op_input_attrs:
                # NOTE: [hack method]
                # Adapt to quantization pass, which presist_vars, including inputs and outputs, all are in global_block.
                # Therefore, the while_op's inputs will contain the all persist_vars, which will be inputs or output of the quantization op in subblock.
                op_input_attrs = self._get_subblock_output_attrs(op, var_name)
2205 2206 2207
        else:
            op_input_attrs = self._get_common_op_input_attrs(op, var_name)

2208 2209 2210 2211 2212
        assert (
            op_input_attrs
        ), "The input '{}' of op '{}' has no distibution attributes in subblock".format(
            op.name, var_name
        )
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

        return op_input_attrs

    def _remove_global_process_mesh(self):
        """Remove global process mesh from dist_context.process_meshes"""
        processes = set()
        process_mesh_count = len(self.dist_context.process_meshes)
        if process_mesh_count > 1:
            global_process_mesh_idx = None
            for process_mesh in self.dist_context.process_meshes:
2223
                for process in process_mesh.process_ids:
2224 2225
                    processes.add(process)
            for idx, process_mesh in enumerate(
2226 2227
                self.dist_context.process_meshes
            ):
2228
                if len(set(process_mesh.process_ids)) == len(processes):
2229 2230
                    global_process_mesh_idx = idx
                    break
2231

2232
            if global_process_mesh_idx is not None:
2233 2234 2235 2236 2237
                is_removed = False
                global_mesh = self.dist_context.process_meshes[idx]
                for i, mesh in enumerate(self.dist_context.process_meshes):
                    if i == idx:
                        continue
2238
                    if set(mesh.process_ids) < set(global_mesh.process_ids):
2239 2240 2241 2242
                        is_removed = True

                if is_removed:
                    self.dist_context.process_meshes.pop(idx)
2243 2244 2245 2246

    def _change_subblock_op_input_and_output(self, block_idx, block):
        if "var_reshard_mapping" in Resharder.while_block_info[block_idx]:
            var_reshard_mapping = Resharder.while_block_info[block_idx][
2247 2248
                "var_reshard_mapping"
            ]
2249 2250 2251 2252 2253 2254 2255 2256
            for op in block.ops:
                for var_name in op.input_arg_names:
                    if var_name in var_reshard_mapping:
                        # in while sub block, the union process mesh is not split before reshard sub block
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        dist_attr = dist_op.dist_attr
                        target_name = None
                        for item in var_reshard_mapping[var_name]:
2257 2258 2259 2260 2261
                            if (
                                dist_attr.process_mesh == item[0][0]
                                and dist_attr.get_input_dims_mapping(var_name)
                                == item[0][1]
                            ):
2262 2263 2264 2265 2266 2267 2268
                                target_name = item[1]
                                break
                        if target_name is None:
                            continue
                        else:
                            op.desc._rename_input(var_name, target_name)
                            dist_op = self.dist_context.get_dist_op_for_program(
2269 2270
                                op
                            )
2271 2272 2273 2274
                            op_dist_attr = dist_op.dist_attr
                            old_name = var_name
                            new_name = target_name
                            assert old_name != new_name
2275 2276 2277
                            op_input_dist_attr = (
                                op_dist_attr.get_input_dist_attr(old_name)
                            )
2278
                            op_dist_attr.set_input_dist_attr(
2279 2280
                                new_name, op_input_dist_attr
                            )
2281
                            # op_dist_attr.del_input_dist_attr(old_name)
2282 2283 2284 2285 2286 2287

                # the outputs also need to be renamed when the output name is the same with input name in inplace op
                for var_name in op.output_arg_names:
                    # if the tensor has been resharded multiply, it is not supported now.
                    if var_name in var_reshard_mapping:
                        if len(var_reshard_mapping[var_name]) > 1:
2288
                            raise ValueError(
2289
                                "The scene is not supported that the output is inplaced and the tensor has been resharded multiply when as input."
2290
                            )
2291 2292 2293 2294 2295 2296 2297 2298 2299
                        target_name = var_reshard_mapping[var_name][0][1]

                        op.desc._rename_output(var_name, target_name)
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        op_dist_attr = dist_op.dist_attr
                        old_name = var_name
                        new_name = target_name
                        assert old_name != new_name
                        op_output_dist_attr = op_dist_attr.get_output_dist_attr(
2300 2301
                            old_name
                        )
2302
                        op_dist_attr.set_output_dist_attr(
2303 2304
                            new_name, op_output_dist_attr
                        )
2305
                        # op_dist_attr.del_output_dist_attr(old_name)
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

    def _reshard_input(self, block):
        idx = 0
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]

            if self.is_special_op(op):
                idx += 1
                continue

            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None:
2319 2320 2321
                op_input_dist_attrs = (
                    []
                )  # [(op_process_mesh, op_input_dims_mapping), (op_process_mesh, op_input_dims_mapping)]
2322
                if op.type in _g_subblock_ops:
2323 2324 2325 2326
                    if not self.is_condition_replicative(op):
                        raise ValueError(
                            "Please check the condition due to the dims mapping is not replicative."
                        )
2327 2328 2329 2330
                    if (
                        op.attr("sub_block").id
                        not in Resharder.while_block_info
                    ):
2331
                        Resharder.while_block_info[op.attr("sub_block").id] = {}
2332 2333 2334
                    Resharder.while_block_info[op.attr("sub_block").id][
                        "op_id"
                    ] = op.desc.id()
2335 2336 2337 2338

                if op.type == "while":
                    # condition var process mesh is the same with op and dims_mapping is replicative, so it do not need reshard
                    input_var_names = op.input("X")
2339 2340
                elif op.type == "conditional_block":
                    input_var_names = op.input("Input")
2341
                else:
2342 2343 2344 2345 2346 2347
                    input_var_names = op.input_arg_names
                # to avoid while op X order different
                input_var_names.sort()

                idx_offset = 0
                for var_name in input_var_names:
2348 2349
                    # skip lod_tensor_blocking_queue_? name
                    if "lod_tensor_blocking_queue" in var_name:
2350
                        continue
2351 2352 2353
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2354
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2355 2356
                        var
                    )
2357 2358 2359

                    # judge whether union tensor dims_mapping all -1
                    is_union_process_mesh_tensor = False
2360 2361 2362 2363 2364
                    if (
                        dist_tensor.dist_attr.process_mesh
                        not in self.dist_context.process_meshes
                        and self.dist_context.process_meshes
                    ):
2365 2366
                        is_union_process_mesh_tensor = True
                        assert dist_tensor.dist_attr.dims_mapping.count(
2367 2368
                            -1
                        ) == len(dist_tensor.dist_attr.dims_mapping)
2369 2370 2371 2372 2373 2374 2375 2376

                    op_input_attrs = self.get_op_input_attrs(op, var_name)
                    for input_attr in op_input_attrs:
                        input_process_mesh = None

                        # deal with union tensor
                        if is_union_process_mesh_tensor:
                            # if op process mesh is subset of union tensor process mesh, need no reshard
2377 2378
                            if set(input_attr[0].process_ids) <= set(
                                dist_tensor.dist_attr.process_mesh.process_ids
2379 2380
                            ):
                                continue
2381 2382

                        if dist_tensor is not None and self.need_reshard(
2383 2384
                            dist_tensor, input_attr
                        ):
2385
                            reshard_op_desc = self.find_op_desc_seq(
2386 2387 2388 2389 2390
                                dist_tensor, input_attr
                            )
                            self.parse_op_desc(
                                block, reshard_op_desc, var_name, op, input_attr
                            )
2391
                            cur_op_count = len(block.ops)
2392 2393 2394
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2395
                            pre_op_count = cur_op_count
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
                idx = idx + idx_offset + 1
            else:
                idx += 1

    def _hadnle_recv(self, block, idx, var, op, send_rank, recv_rank):
        if self.rank_id == recv_rank:
            # if recv bool data, recv then cast
            if var.dtype == paddle.bool:
                recv_cast_out = block.create_var(
                    name=unique_name.generate(var.name + "@recv"),
                    shape=var.shape,
                    lod_level=var.lod_level,
                    dtype=paddle.int64,
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
                    type=var.type,
                )
                Inserter.insert_recv_op(
                    block,
                    idx + 1,
                    recv_cast_out,
                    send_rank,
                    recv_rank,
                    op.attr('op_role'),
                )
2419 2420 2421 2422 2423 2424
                reset_lod_out = None
                if var.lod_level != 0:
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2425 2426 2427 2428
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2429
                                reset_lod_out = block.create_var(
2430 2431 2432
                                    name=unique_name.generate(
                                        var.name + "@RESETLOD"
                                    ),
2433 2434 2435
                                    shape=recv_cast_out.shape,
                                    type=recv_cast_out.type,
                                    dtype=recv_cast_out.dtype,
2436 2437
                                    lod_level=recv_cast_out.lod_level,
                                )
2438 2439 2440 2441
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2442
                                    inputs={'X': recv_cast_out, 'Y': tmp_var},
2443
                                    outputs={'Out': reset_lod_out},
2444 2445
                                    attrs={'op_role': op.attr("op_role")},
                                )
2446 2447 2448 2449 2450 2451 2452
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True

                # cast int64 to bool
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
                block._insert_op(
                    idx + 2,
                    type='cast',
                    inputs={
                        'X': [recv_cast_out]
                        if reset_lod_out is None
                        else [reset_lod_out]
                    },
                    outputs={'Out': [var]},
                    attrs={
                        'in_dtype': recv_cast_out.dtype,
                        'out_dtype': var.dtype,
                        'op_role': op.attr('op_role'),
                    },
                )
2468 2469 2470 2471 2472 2473 2474
            else:
                if var.lod_level != 0:
                    recv_out = block.create_var(
                        name=unique_name.generate(var.name + "@recv"),
                        shape=var.shape,
                        lod_level=var.lod_level,
                        dtype=var.int64,
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
                        type=var.type,
                    )
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        recv_out,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2485 2486 2487 2488
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2489 2490 2491 2492
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2493 2494 2495 2496
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2497
                                    inputs={'X': recv_out, 'Y': tmp_var},
2498
                                    outputs={'Out': var},
2499 2500
                                    attrs={'op_role': op.attr("op_role")},
                                )
2501 2502 2503 2504 2505
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True
2506
                else:
2507 2508 2509 2510 2511 2512 2513 2514
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        var,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2515 2516 2517

    def _handle_send(self, block, idx, var, op, send_rank, recv_rank):
        if var.dtype == paddle.bool:
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
            cast_out = Inserter.insert_cast_op(
                block, idx + 1, var, op.attr('op_role'), paddle.int64
            )
            Inserter.insert_send_op(
                block,
                idx + 2,
                cast_out,
                send_rank,
                recv_rank,
                op.attr('op_role'),
            )
2529
        else:
2530 2531 2532
            Inserter.insert_send_op(
                block, idx + 1, var, send_rank, recv_rank, op.attr('op_role')
            )
2533 2534 2535 2536 2537 2538

    def _reshard_output(self, block):
        # insert send and recv op if output process mesh is different from tensor process mesh
        idx = 0
        # skip reader and ops whose process mesh is union
        skip_ops = [
2539 2540 2541 2542 2543
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
            "write_to_array",
            "read_from_array",
2544 2545
            "nop",
            "depend",
2546 2547 2548
        ]
        global _g_special_ops
        skip_ops += _g_special_ops
2549
        skip_ops += _g_subblock_ops
2550 2551 2552 2553 2554 2555 2556
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None and op.type not in skip_ops:
                idx_offset = 0
                for var_name in op.output_arg_names:
2557 2558 2559
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2560
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2561 2562
                        var
                    )
2563 2564 2565
                    tensor_process_mesh = dist_tensor.dist_attr.process_mesh
                    output_attr = [
                        dist_op.dist_attr.process_mesh,
2566
                        dist_op.dist_attr.get_output_dims_mapping(var_name),
2567 2568
                    ]
                    if dist_tensor is not None and self.need_reshard(
2569 2570
                        dist_tensor, output_attr, False
                    ):
2571
                        tensor_processes = set(
2572
                            tensor_process_mesh.process_ids
2573
                        ) - (
2574 2575
                            set(tensor_process_mesh.process_ids)
                            & set(output_attr[0].process_ids)
2576
                        )
2577 2578
                        if tensor_processes:
                            if len(tensor_processes) != len(
2579
                                output_attr[0].process_ids
2580
                            ):
2581
                                if dist_tensor.dist_attr.dims_mapping.count(
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
                                    -1
                                ) != len(
                                    dist_tensor.dist_attr.dims_mapping
                                ) or output_attr[
                                    1
                                ].count(
                                    -1
                                ) != len(
                                    output_attr[1]
                                ):
2592
                                    raise ValueError(
2593 2594
                                        "The dims_mapping must be -1"
                                    )
2595 2596
                                else:
                                    for index, tensor_process in enumerate(
2597 2598
                                        tensor_processes
                                    ):
2599 2600 2601
                                        recv_rank = tensor_process
                                        actual_index = index
                                        if index >= len(
2602
                                            output_attr[0].process_ids
2603
                                        ):
2604
                                            actual_index = (
2605
                                                index
2606 2607 2608 2609 2610
                                                - len(
                                                    output_attr[0].process_ids
                                                )
                                            ) % len(output_attr[0].process_ids)
                                        item = output_attr[0].process_ids[
2611 2612
                                            actual_index
                                        ]
2613 2614 2615 2616 2617
                                        if recv_rank == item:
                                            continue
                                        if self.rank_id == item:
                                            # if send bool data, cast then send
                                            self._handle_send(
2618 2619 2620 2621 2622 2623 2624
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2625 2626 2627
                                        if self.rank_id == recv_rank:
                                            # if recv bool data, recv then cast
                                            self._hadnle_recv(
2628 2629 2630 2631 2632 2633 2634
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2635 2636
                            else:
                                for index, tensor_process in enumerate(
2637 2638
                                    tensor_processes
                                ):
2639
                                    recv_rank = tensor_process
2640
                                    item = output_attr[0].process_ids[index]
2641 2642 2643 2644 2645
                                    if recv_rank == item:
                                        continue
                                    if self.rank_id == item:
                                        # if send bool data, cast then send
                                        self._handle_send(
2646 2647
                                            block, idx, var, op, item, recv_rank
                                        )
2648 2649 2650
                                    if self.rank_id == recv_rank:
                                        # if recv bool data, recv then cast
                                        self._hadnle_recv(
2651 2652
                                            block, idx, var, op, item, recv_rank
                                        )
2653 2654

                            cur_op_count = len(block.ops)
2655 2656 2657
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
                            pre_op_count = cur_op_count

                idx = idx + idx_offset + 1
            else:
                idx += 1

    def reshard(self):
        self._remove_global_process_mesh()
        for block_idx, block in enumerate(self.auto_parallel_main_prog.blocks):
            # change the var_name before resharding sub block
            if block_idx in Resharder.while_block_info:
                self._change_subblock_op_input_and_output(block_idx, block)

            # reshard input
            self._reshard_input(block)

            # reshard output
            # NOTE: Only support that insert send and recv op if output process mesh is different from tensor process mesh
            self._reshard_output(block)
2677 2678

        # remove no need vars and ops in the main program
2679 2680 2681 2682 2683 2684
        Remover.remove_no_need_in_main(
            self.auto_parallel_main_prog,
            self.dist_context,
            self.rank_id,
            self.dist_params_grads,
        )
2685

2686
        # remove no need vars and ops in the startip program
2687 2688 2689
        Remover.remove_no_need_in_startup(
            self.auto_parallel_main_prog, self.auto_parallel_startup_prog
        )
C
caozhou 已提交
2690

2691 2692
        # reset some variable when remove operation ended
        Resharder.while_block_info = {}
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

    def get_cost(self, op, tensor, cluster):
        # NOTE: The program should be the serial_program which is not been parted
        global _g_special_ops
        not_supported_op_type = _g_special_ops + ["while"]
        reshard_op_cost = None
        if op.type in not_supported_op_type:
            return reshard_op_cost
        else:
            tensor_name = tensor.name
            if tensor_name == "lod_tensor_blocking_queue_0":
                return reshard_op_cost
            else:
                dist_tensor = self.dist_context.get_dist_tensor_for_program(
2707 2708
                    tensor
                )
2709 2710
                # simplified processing: ignore union process mesh and output reshard
                dist_op = self.dist_context.get_dist_op_for_program(op)
2711 2712
                if not dist_tensor or not dist_op:
                    return reshard_op_cost
2713
                dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
2714 2715
                    tensor.name
                )
2716 2717 2718
                process_mesh = dist_op.dist_attr.process_mesh
                dist_attr = [process_mesh, dims_mapping]
                if dist_tensor is not None and self.need_reshard(
2719 2720
                    dist_tensor, dist_attr
                ):
2721 2722 2723 2724 2725
                    if tensor_name not in self._has_resharded:
                        self._has_resharded[tensor_name] = [dist_op]
                    else:
                        for item in self._has_resharded[tensor_name]:
                            item_dist_attr = item.dist_attr
2726 2727 2728 2729 2730
                            item_dims_mapping = (
                                item_dist_attr.get_input_dims_mapping(
                                    tensor_name
                                )
                            )
2731
                            item_process_mesh = item_dist_attr.process_mesh
2732 2733 2734 2735
                            if (
                                dims_mapping == item_dims_mapping
                                and item_process_mesh == process_mesh
                            ):
2736 2737 2738
                                return reshard_op_cost
                        self._has_resharded[tensor_name].append(dist_op)

2739 2740 2741
                    reshard_op_desc = self.find_op_desc_seq(
                        dist_tensor, dist_attr, serial=True
                    )
2742 2743
                    dtype = dist_tensor.serial_tensor.dtype
                    reshard_op_cost = self.parse_op_desc_for_cost(
2744 2745
                        reshard_op_desc, dtype, cluster
                    )
2746 2747 2748

        return reshard_op_cost

2749 2750 2751 2752 2753 2754 2755 2756 2757
    def _concat_partitions_for_cost(
        self,
        partition_tensor_list,
        partition_index,
        dtype,
        rank_id,
        local_rank_comp_cost,
        cluster,
    ):
2758 2759 2760 2761 2762 2763
        if not partition_tensor_list:
            partition_tensor_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
2764 2765 2766 2767 2768 2769 2770
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i], partition_index
                )
2771 2772 2773 2774 2775 2776 2777
                if concat_axis != -1:
                    has_concat = True
                    concat_desc = {}
                    concat_desc["op"] = "concat"
                    concat_desc["attrs"] = {"axis": concat_axis}
                    if first_order == 0:
                        concat_desc["inputs"] = {
2778 2779 2780 2781
                            "X": [
                                (dtype, partition_tensor_list[i]),
                                (dtype, partition_index),
                            ]
2782 2783 2784
                        }
                    else:
                        concat_desc["inputs"] = {
2785 2786 2787 2788
                            "X": [
                                (dtype, partition_index),
                                (dtype, partition_tensor_list[i]),
                            ]
2789 2790 2791 2792 2793
                        }
                    partition_tensor_list.pop(i)
                    if rank_id not in local_rank_comp_cost:
                        local_rank_comp_cost[rank_id] = []
                    local_rank_comp_cost[rank_id].append(
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
                        ConcatOpCost(op_desc=concat_desc, cluster=cluster)
                    )
                    self._concat_partitions_for_cost(
                        partition_tensor_list,
                        new_partition,
                        dtype,
                        rank_id,
                        local_rank_comp_cost,
                        cluster,
                    )
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append(partition_index)

    def parse_op_desc_for_cost(self, reshard_op_desc, dtype, cluster):
        def _get_idx(comm_ranks, group_ranks):
            res, is_the_same = None, False
            idx = 0
            while idx < len(comm_ranks):
                if comm_ranks[idx] == set(group_ranks):
                    is_the_same = True

                for rank in group_ranks:
                    if rank in comm_ranks[idx]:
                        res = idx
                        comm_ranks[idx].add(rank)
                if res is None:
                    idx += 1
                else:
                    break
            return res, is_the_same

        comm_context = CommContext(cluster)
        # run communication op before computation op
        # TODO: Communication cost is not calculated when the var has been transfered by the same group in the past
        comm_costs = []
        comm_ranks = []
        local_rank_comp_cost = {}
        for key in reshard_op_desc:
            partition_tensor_list = []
            op_desc_list = reshard_op_desc[key]
            for op_desc in op_desc_list:
                if isinstance(op_desc, SendOpDesc):
                    group_ranks = [key, op_desc.dst]
                    shape = op_desc.shape
2840 2841 2842
                    send_desc = build_comm_desc(
                        "send_v2", group_ranks, dtype, shape
                    )
2843 2844
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2856 2857 2858 2859
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2860 2861 2862 2863 2864 2865 2866 2867
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2868 2869 2870 2871
                elif isinstance(op_desc, AllGatherOpDesc):
                    # NOTE: fill_const and other unnecessary op is not calculated because those cost is very small
                    group_ranks = op_desc.group
                    shape = op_desc.shape
2872 2873 2874
                    allgather_desc = build_comm_desc(
                        "c_allgather", group_ranks, dtype, shape
                    )
2875 2876 2877 2878 2879 2880 2881 2882
                    split_inputs_shape = []
                    for idx, dim in enumerate(shape):
                        if idx == 0:
                            split_inputs_shape.append(dim * len(group_ranks))
                        else:
                            split_inputs_shape.append(dim)
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2894 2895 2896 2897
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2898 2899 2900 2901 2902 2903 2904 2905
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
                    # calc the split op cost
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
                    split_desc = {}
                    split_desc["op"] = "split"
                    split_desc["inputs"] = {
                        "inputs": [(dtype, split_inputs_shape)]
                    }
                    split_desc["attrs"] = {"num": len(group_ranks), "axis": 0}
                    local_rank_comp_cost[key].append(
2916 2917
                        SplitOpCost(op_desc=split_desc, cluster=cluster)
                    )
2918 2919 2920 2921
                elif isinstance(op_desc, ConcatOpDesc):
                    partition_index_list = op_desc._partition_index_list
                    for idx, partion_idex in enumerate(partition_index_list):
                        self._concat_partitions_for_cost(
2922 2923 2924 2925 2926 2927 2928
                            partition_tensor_list,
                            partion_idex,
                            dtype,
                            key,
                            local_rank_comp_cost,
                            cluster,
                        )
2929 2930 2931 2932

                elif isinstance(op_desc, SliceOpDesc):
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
2933 2934 2935 2936
                    assert (
                        len(partition_tensor_list) == 1
                        or not partition_tensor_list
                    )
2937 2938 2939 2940 2941 2942 2943 2944
                    to_slice_tensor_shape = []
                    if len(partition_tensor_list) == 1:
                        for item in partition_tensor_list[0]:
                            to_slice_tensor_shape.append(item[1] - item[0])
                    else:
                        to_slice_tensor_shape = op_desc.shape
                    slice_desc = {}
                    slice_desc["op"] = "slice"
2945
                    infer_flags = [1 for i in range(len(op_desc.axes))]
2946 2947 2948 2949
                    slice_desc["attrs"] = {
                        "axes": op_desc.axes,
                        "starts": op_desc.starts,
                        "ends": op_desc.ends,
2950
                        "infer_flags": infer_flags,
2951 2952 2953 2954 2955
                    }
                    slice_desc["inputs"] = {
                        "Input": [(dtype, to_slice_tensor_shape)]
                    }
                    local_rank_comp_cost[key].append(
2956 2957
                        SliceOpCost(op_desc=slice_desc, cluster=cluster)
                    )
2958 2959 2960 2961

        res = (comm_costs, local_rank_comp_cost)

        return res