reshard.py 111.2 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from functools import reduce

import paddle
import paddle.fluid.core as core
from paddle.utils import unique_name
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import Program, OpProtoHolder
22
from paddle.distributed.fleet.meta_optimizers.common import OpRole
C
caozhou 已提交
23
import paddle.fluid.layers.utils as utils
24
from .dist_context import DistributedContext
25 26
from .dist_attribute import TensorDistributedAttribute
from .process_group import new_process_group
27 28 29
from .cost import build_comm_desc, CommContext
from .cost import AllgatherOpCost, SendOpCost
from .cost import SliceOpCost, SplitOpCost, ConcatOpCost
30
from .utils import is_gradient_clip_op
C
caozhou 已提交
31

32
# NOTE: If op in _g_special_ops or _g_gradient_clip_ops, it will not be resharded.
33
_g_special_ops = ['check_finite_and_unscale', 'update_loss_scaling']
34
_g_gradient_clip_ops = [
35 36 37 38 39
    "sum",
    "sqrt",
    "fill_constant",
    "elementwise_max",
    "elementwise_div",
40
]
41
_g_subblock_ops = ["while", "conditional_block"]
42 43 44 45 46 47 48 49


def get_var_with_recursion(var_name, block, program):
    """Get var in the parent block if not found in the current block"""
    var = None
    if var_name in block.vars:
        var = block.vars[var_name]
    else:
50 51 52 53 54
        var = block._var_recursive(var_name)
        # parent_block = program.blocks[block.parent_idx]
        # if var_name in parent_block.vars:
        #     var = parent_block.vars[var_name]
    assert var is not None, "{} is not found".format(var.name)
55

56
    return var
57

C
caozhou 已提交
58 59 60 61 62 63 64

class AllGatherOpDesc:
    """
    Describe the allgather op in the reshard phase.

    Args:
        group (list): Process group.
65 66
        shape (list): The tensor shape.
        is_bool (bool): Whether allgather bool data. Default: False.
C
caozhou 已提交
67 68
    """

69
    def __init__(self, group, shape, is_bool=False):
C
caozhou 已提交
70 71
        self._group = group
        self._desc = "all_gather"
72 73 74 75 76 77
        self._shape = shape
        self._is_bool = is_bool

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
78 79 80 81 82 83 84 85 86

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

87 88 89 90
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
91
    def __repr__(self):
92
        return f"op: {self._desc}, group: {self._group}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
93 94 95 96 97 98 99 100


class SendOpDesc:
    """
    Describe the send op in the reshard phase.

    Args:
        partition_index (list): The index of partition in complete tensor.
101
        src (int): The source process to send.
C
caozhou 已提交
102
        dst (int): The destination process to receive.
103
        is_bool (bool): Whether send bool data. Default: False.
C
caozhou 已提交
104 105
    """

106
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
107 108 109
        self._dst = dst
        self._partition_index = partition_index
        self._desc = "send"
110 111 112 113 114 115 116 117 118 119 120
        self._shape = []
        self._is_bool = is_bool
        self._src = src

    @property
    def src(self):
        return self._src

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def dst(self):
        return self._dst

    @property
    def desc(self):
        return self._desc

134 135 136 137 138 139 140
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
141
    def __repr__(self):
142
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
143 144 145 146 147 148 149 150 151


class RecvOpDesc:
    """
    Describe the recv op in the reshard op.

    Args:
        partition_index (list): The index of partition in complete tensor.
        src (int): The source process to send.
152 153
        dst (int): The destination process to receive.
        is_bool (bool): Whether receive bool data. Default: False.
C
caozhou 已提交
154 155
    """

156
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
157 158 159
        self._src = src
        self._partition_index = partition_index
        self._desc = "recv"
160 161 162 163 164 165 166 167 168 169 170
        self._shape = []
        self._is_bool = is_bool
        self._dst = dst

    @property
    def dst(self):
        return self._dst

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def src(self):
        return self._src

    @property
    def desc(self):
        return self._desc

184 185 186 187 188 189 190
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
191
    def __repr__(self):
192
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
193 194 195 196 197 198 199


class SliceOpDesc:
    """
    Describe the slice op in the reshard phase.

    Args:
200 201 202 203
        starts (list): It represents start indices of corresponding axis in ``axes``.
        ends (list):  It represents end indices of corresponding axis in ``axes``.
        axes (list):  Axes that `starts` and `ends` apply to.
        shape (list): The shape of the tensor to be sliced.
C
caozhou 已提交
204 205
    """

206
    def __init__(self, starts, ends, axes, shape=None):
C
caozhou 已提交
207 208 209 210
        self._starts = starts
        self._ends = ends
        self._axes = axes
        self._desc = "slice"
211
        self._shape = shape
C
caozhou 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

    @property
    def starts(self):
        return self._starts

    @property
    def ends(self):
        return self._ends

    @property
    def axes(self):
        return self._axes

    @property
    def desc(self):
        return self._desc

229 230 231 232
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
233
    def __repr__(self):
234 235 236 237
        if self._shape is not None:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}, shape: {self._shape}."
        else:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}."
C
caozhou 已提交
238 239 240 241 242 243 244


class ConcatOpDesc:
    """
    Describe the concat op in the reshard phase.

    Args:
245
        partition_index_list (list): The list contains all partition index.
C
caozhou 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    """

    def __init__(self, partition_index_list):
        self._partition_index_list = partition_index_list
        self._desc = "concat"

    @property
    def partition_index_list(self):
        return self._partition_index_list

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index_list: {self._partition_index_list}."


264 265
class Inserter:
    """Insert op required in the reshard process."""
C
caozhou 已提交
266

267
    @staticmethod
268 269 270
    def insert_cast_op(block, idx, tensor, op_role, tensor_type):
        # to avoid name conflict with framework
        new_var_name = paddle.fluid.unique_name.generate_with_ignorable_key(
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
            ".".join(["cast@RESHARD", 'tmp'])
        )
        out = block.create_var(
            name=new_var_name,
            dtype=tensor_type,
            type=tensor.type,
            lod_level=tensor.lod_level,
        )
        cast_op = block._insert_op(
            idx,
            type='cast',
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
                'in_dtype': tensor.dtype,
                'out_dtype': out.dtype,
                'op_role': op_role,
            },
        )
290
        cast_op._set_attr('op_namescope', "/auto_parallel/reshard")
291 292 293 294
        return out

    @staticmethod
    def insert_send_op(block, idx, tensor, src, dst, op_role):
295 296
        """Insert send op into block at the given index."""
        op_type = 'send_v2'
297 298
        # use pair comm group
        process_group = new_process_group([src, dst])
299 300 301 302 303 304 305 306 307 308 309 310
        send_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(dst),
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': True,
            },
        )
311
        send_op._set_attr('op_namescope', "/auto_parallel/reshard")
312 313

    @staticmethod
314
    def insert_recv_op(block, idx, tensor, src, dst, op_role):
315 316
        """Insert recv op into block at the given index."""
        op_type = 'recv_v2'
317 318
        # use pair group
        process_group = new_process_group([src, dst])
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        recv_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(src),
                'out_shape': tensor.shape,
                'dtype': tensor.dtype,
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': True,
            },
        )
334
        recv_op._set_attr('op_namescope', "/auto_parallel/reshard")
335

336 337 338 339 340
    @staticmethod
    def insert_reset_lod_op(block, idx, X, Y, op_role):
        """Insert reset_lod op into block at the given index."""

        new_var_name = paddle.fluid.unique_name.generate_with_ignorable_key(
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            ".".join(["reset_lod@RESHARD", 'tmp'])
        )
        reset_lod_out = block.create_var(
            name=new_var_name,
            shape=X.shape,
            type=X.type,
            dtype=X.dtype,
            lod_level=X.lod_level,
        )

        reset_op = block._insert_op(
            idx,
            type="lod_reset",
            inputs={'X': X, 'Y': Y},
            outputs={'Out': reset_lod_out},
            attrs={'op_role': op_role},
        )
358
        reset_op._set_attr('op_namescope', "/auto_parallel/reshard")
359 360
        return reset_lod_out

361 362 363 364 365 366 367
    @staticmethod
    def insert_concat_op(block, idx, tensors, axis, op_role):
        """Insert concat op into block at the given block."""
        inputs = {'X': tensors}
        attrs = {}
        attrs['axis'] = axis
        attrs['op_role'] = op_role
368 369
        # to avoid name conflict with framework
        helper = LayerHelper('concat@RESHARD', **locals())
370
        with paddle.static.program_guard(block.program):
371 372
            out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
373 374
                    ".".join([helper.name, 'tmp'])
                ),
375 376 377 378 379
                dtype=tensors[0].dtype,
                shape=None,
                lod_level=tensors[0].lod_level,
                type=tensors[0].type,
                persistable=False,
380 381 382 383 384 385 386 387 388
                stop_gradient=False,
            )
        concat_op = block._insert_op(
            idx,
            type='concat',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
389
        concat_op._set_attr('op_namescope', "/auto_parallel/reshard")
390
        return out
C
caozhou 已提交
391

392
    @staticmethod
393 394 395
    def insert_slice_op(
        block, idx, tensor, starts, ends, axes, new_var_name, op_role
    ):
396
        """Insert slice op into block at the given block."""
397 398 399 400 401 402 403 404 405 406 407 408 409
        # This is a hack to insert split op to get slice tensor
        # 1. [128, 128] => [64, 128]: split
        # 2. [128, 128] => [128, 128]: assign
        # 3. [128, 128] => [64, 64]: slice, it will replaced by multi split
        global_shape = tensor.shape
        slice_shape = [ends[i] - starts[i] for i in range(len(starts))]
        diff_dims = []
        for index, item in enumerate(slice_shape):
            if item != global_shape[index]:
                diff_dims.append(index)

        # use assign
        if len(diff_dims) == 0:
410 411 412 413 414 415 416
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                shape=slice_shape,
                lod_level=tensor.lod_level,
            )
417 418 419
            inputs = {'X': [tensor]}
            outputs = {"Out": [out]}
            attrs = {"in_place": False}
420 421 422
            slice_op = block._insert_op(
                idx, type="assign", inputs=inputs, outputs=outputs, attrs=attrs
            )
423
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
            return out

        # use split once
        elif len(diff_dims) == 1:
            diff_dim = diff_dims[0]
            num_or_sections = global_shape[diff_dim] // slice_shape[diff_dim]
            axis = diff_dim
            cur_idx = starts[diff_dim] // slice_shape[diff_dim]
            input_shape = global_shape
            inputs = {'X': tensor}
            attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
            new_shape = []
            for index, item in enumerate(tensor.shape):
                if index != axis:
                    new_shape.append(item)
                else:
                    new_shape.append(item // num_or_sections)
            with paddle.static.program_guard(block.program):
                outs = [
443 444 445 446 447 448 449 450 451 452 453
                    block.create_var(
                        name=paddle.fluid.unique_name.generate_with_ignorable_key(
                            ".".join(['split@RESHARD', 'tmp'])
                        ),
                        dtype=tensor.dtype,
                        shape=None,
                        type=tensor.type,
                        persistable=False,
                        lod_level=tensor.lod_level,
                        stop_gradient=False,
                    )
454 455 456
                    for i in range(num_or_sections)
                ]
                out = outs[cur_idx]
457 458 459 460 461 462 463
            split_op = block._insert_op(
                idx,
                type="split",
                inputs=inputs,
                outputs={'Out': outs},
                attrs=attrs,
            )
464
            split_op._set_attr('op_namescope', "/auto_parallel/reshard")
465 466 467 468 469 470 471 472 473 474 475
            return out

        # use slice
        else:
            inputs = {'Input': tensor}
            infer_flags = list(1 for i in range(len(axes)))
            attrs = {
                "axes": axes,
                "starts": starts,
                "ends": ends,
                "infer_flags": infer_flags,
476
                'op_role': op_role,
477
            }
478 479 480 481 482 483 484 485 486 487 488 489 490
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                lod_level=tensor.lod_level,
            )
            slice_op = block._insert_op(
                idx,
                type="slice",
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
491
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
492
            return out
C
caozhou 已提交
493

494
    @staticmethod
495
    def insert_split_op(block, idx, tensor, num_or_sections, op_role, axis=0):
496
        """Insert split op into block at the given index."""
497
        helper = LayerHelper('split@RESHARD', **locals())
498 499
        input_shape = tensor.shape
        inputs = {'X': tensor}
500 501 502 503 504 505 506
        attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
        new_shape = []
        for index, item in enumerate(tensor.shape):
            if index != axis:
                new_shape.append(item)
            else:
                new_shape.append(item // num_or_sections)
507 508
        with paddle.static.program_guard(block.program):
            outs = [
509 510
                block.create_var(
                    name=paddle.fluid.unique_name.generate_with_ignorable_key(
511 512
                        ".".join([helper.name, 'tmp'])
                    ),
513 514 515 516 517
                    dtype=tensor.dtype,
                    shape=None,
                    lod_level=tensor.lod_level,
                    type=tensor.type,
                    persistable=False,
518 519 520
                    stop_gradient=False,
                )
                for i in range(num_or_sections)
521
            ]
522 523 524
        split_op = block._insert_op(
            idx, type="split", inputs=inputs, outputs={'Out': outs}, attrs=attrs
        )
525
        split_op._set_attr('op_namescope', "/auto_parallel/reshard")
526
        return outs
C
caozhou 已提交
527

528 529
    @staticmethod
    def insert_fill_constant_op(block, idx, op_role):
C
caozhou 已提交
530
        """Insert fill constant op into block at the given index."""
531 532 533
        # to avoid name conflict with framework
        helper = LayerHelper('fill_constant@RESHARD', **locals())
        # use paddle.int64 as dtype
C
caozhou 已提交
534
        with paddle.static.program_guard(block.program):
535 536
            out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
537 538
                    ".".join([helper.name, 'tmp'])
                ),
539 540 541 542
                dtype=paddle.int64,
                shape=None,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
543 544
                stop_gradient=False,
            )
C
caozhou 已提交
545 546 547 548 549
        inputs = {}
        attrs = {'force_cpu': False}
        attrs['str_value'] = str(int("1"))
        attrs['value'] = int("1")
        attrs['dtype'] = out.dtype
550
        attrs['op_role'] = op_role
551 552 553 554 555 556 557 558 559 560
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=[0], op_type='fill_constant'
        )
        fillconstant_op = block._insert_op(
            idx,
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
C
caozhou 已提交
561
        out.stop_gradient = True
562
        fillconstant_op._set_attr('op_namescope', "/auto_parallel/reshard")
C
caozhou 已提交
563 564
        return out

565 566 567 568 569 570 571 572 573 574
    @staticmethod
    def insert_allgather_op(block, idx, tensor, ranks, op_role):
        """Insert allgather op into block at the given index."""
        tensor_list = []
        group = new_process_group(ranks)
        idx_offset = 0

        # instant process group before insert allgather op.
        if not group.is_instantiate():
            # insert fill_constant op
575
            fill_constant_out = Inserter.insert_fill_constant_op(
576 577
                block, idx, op_role
            )
578 579 580
            fill_constant_out.stop_gradient = True

            # insert c_allreduce_sum op
581 582 583 584 585 586 587 588
            allreduce_op = block._insert_op(
                idx + 1,
                type="c_allreduce_sum",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
                attrs={
                    'ring_id': 0,
                    'use_calc_stream': True,
589 590 591
                    'op_role': op_role,
                },
            )
592
            allreduce_op._set_attr('op_namescope', "/auto_parallel/reshard")
593
            # insert c_sync_calc_stream op
594 595 596 597 598
            sync_calc_op = block._insert_op(
                idx + 2,
                type="c_sync_calc_stream",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
599 600
                attrs={'op_role': op_role},
            )
601
            sync_calc_op._set_attr('op_namescope', "/auto_parallel/reshard")
602 603 604 605
            idx_offset = 3

        # insert c_allgather op
        op_type = 'c_allgather'
606 607
        # to avoid name conflict with framework
        helper = LayerHelper(op_type + "@RESHARD", **locals())
608
        with paddle.static.program_guard(block.program):
609 610
            allgather_out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
611 612
                    ".".join([helper.name, 'tmp'])
                ),
613 614 615 616 617
                dtype=tensor.dtype,
                shape=None,
                lod_level=tensor.lod_level,
                type=tensor.type,
                persistable=False,
618 619 620 621 622 623 624 625 626 627 628 629 630 631
                stop_gradient=False,
            )
        allgather_op = block._insert_op(
            idx + idx_offset,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [allgather_out]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'nranks': group.nranks,
                'op_role': op_role,
            },
        )
632
        allgather_op._set_attr('op_namescope', "/auto_parallel/reshard")
633 634 635
        idx_offset += 1

        # insert split op
636 637 638
        split_out = Inserter.insert_split_op(
            block, idx + idx_offset, allgather_out, group.nranks, op_role
        )
639 640 641 642 643
        idx_offset += 1
        tensor_list.extend(split_out)
        return tensor_list, idx_offset

    @staticmethod
644 645 646
    def concat_partitions_with_op(
        partition_tensor_list, tensor, partition_index, block, idx, op_role
    ):
647 648
        """Concat the tensors and insert concat op."""
        if not partition_tensor_list:
C
caozhou 已提交
649
            partition_tensor_list.append((tensor, partition_index))
650 651 652 653
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
654 655 656 657 658 659 660
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i][1], partition_index
                )
661 662
                if concat_axis != -1:
                    has_concat = True
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
                    _ = (
                        Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [partition_tensor_list[i][0], tensor],
                            concat_axis,
                            op_role,
                        )
                        if first_order == 0
                        else Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [tensor, partition_tensor_list[i][0]],
                            concat_axis,
                            op_role,
                        )
                    )
680 681
                    partition_tensor_list.pop(i)
                    idx[0] += 1
682 683 684 685 686 687 688 689
                    Inserter.concat_partitions_with_op(
                        partition_tensor_list,
                        _,
                        new_partition,
                        block,
                        idx,
                        op_role,
                    )
690 691 692 693 694 695 696 697 698 699 700 701 702
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append((tensor, partition_index))


class Remover:
    """Remove var and op in the reshard process."""

    @staticmethod
    def remove_no_need_ops(auto_parallel_main_prog, dist_context, rank_id):
        """Remove no need ops in the main program"""
        not_remove_op_ref = [
703 704 705
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
706
        ]
C
caozhou 已提交
707

708 709 710 711
        # NOTE: The nested sub block is not be supported now.
        remove_block_order = []
        for block_idx in Resharder.while_block_info:
            remove_block_order.append(block_idx)
C
caozhou 已提交
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            if block_idx not in remove_block_order:
                remove_block_order.append(block_idx)

        # the sub block should be removed first
        for block_idx in remove_block_order:
            remove_op_idx = []
            block = auto_parallel_main_prog.blocks[block_idx]
            ops = block.ops
            vars = block.vars
            for idx, op in enumerate(ops):
                if op.type == "read":
                    dim_list = []
                    for var_name in op.output_arg_names:
                        dim_list.extend(
                            get_var_with_recursion(
729 730 731
                                var_name, block, auto_parallel_main_prog
                            ).shape
                        )
732 733 734 735 736
                    for i in range(idx, -1, -1):
                        if ops[i].type == "create_py_reader":
                            ops[i]._set_attr("shape_concat", dim_list)
                            break
                    continue
737

738 739 740 741
                # replace the input and output of c_sync_comm_stream op when in pipeline scene.
                if op.type == "c_sync_comm_stream":
                    need_save = []
                    for var_name in op.input_arg_names:
742 743 744 745 746 747 748
                        process_mesh = (
                            dist_context.get_tensor_dist_attr_for_program(
                                get_var_with_recursion(
                                    var_name, block, auto_parallel_main_prog
                                )
                            ).process_mesh
                        )
749 750 751 752 753
                        if rank_id in process_mesh.processes:
                            need_save.append(var_name)
                    if not need_save:
                        remove_op_idx.append(idx)
                        continue
754

755 756 757 758
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, need_save)
                    op.desc.set_output(proto.outputs[0].name, need_save)
                    continue
759

760 761 762 763
                # judge the other op whether should be removed.
                op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
                if op_dist_attr is not None:
                    op_process_mesh = op_dist_attr.process_mesh
764 765 766 767
                    if (
                        rank_id not in op_process_mesh.processes
                        and op.type not in not_remove_op_ref
                    ):
768 769 770 771 772 773
                        remove_op_idx.append(idx)

            for idx in remove_op_idx[::-1]:
                block._remove_op(idx)

    @staticmethod
774 775 776
    def remove_no_need_vars(
        auto_parallel_main_prog, dist_params_grads, feed_var_names
    ):
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
        """Remove no need vars in the main program"""
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            remove_vars = set()
            ops = block.ops
            vars = block.vars
            need_vars = set()
            for op in ops:
                for var_name in op.input_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
                for var_name in op.output_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
            for var in vars:
                if var not in need_vars:
                    remove_vars.add(var)

            # change dist_params_grads, the optimize op just in block 0.
            if block_idx == 0:
                param_grad_map = {}
                for op in ops:
                    if int(op.attr('op_role')) == int(OpRole.Optimize):
799 800 801 802
                        if (
                            "Param" in op.input_names
                            and "Grad" in op.input_names
                        ):
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
                            param_name = op.input("Param")[0]
                            grad_name = op.input("Grad")[0]
                            param_grad_map[param_name] = grad_name

                need_remove_idx = []
                for idx, item in enumerate(dist_params_grads):
                    if item[0].name not in param_grad_map.keys():
                        need_remove_idx.append(idx)

                for idx in need_remove_idx[::-1]:
                    dist_params_grads.pop(idx)

                idx = 0
                while idx < len(dist_params_grads):
                    param_name = dist_params_grads[idx][0].name
                    grad_name = dist_params_grads[idx][1].name
                    if grad_name != param_grad_map[param_name]:
                        dist_params_grads[idx] = (
821 822 823
                            vars[param_name],
                            vars[param_grad_map[param_name]],
                        )
824 825 826
                    idx += 1

            for var in remove_vars:
827
                if var in feed_var_names:
828
                    continue
829 830 831
                block._remove_var(var)

    @staticmethod
832 833 834
    def remove_no_need_in_main(
        auto_parallel_main_prog, dist_context, rank_id, dist_params_grads
    ):
835
        """Remove no need vars and ops in the main program."""
836 837 838 839 840 841
        Remover.remove_no_need_ops(
            auto_parallel_main_prog, dist_context, rank_id
        )
        Resharder.change_while_op_input_and_output(
            auto_parallel_main_prog, dist_context
        )
842 843 844 845
        # 'feed_var_names' cannot be removed from auto_parallel_main_prog
        feed_var_names = []
        for var in sum(list(dist_context.serial_feed_vars.values()), []):
            feed_var_names.append(var.name)
846 847 848
        Remover.remove_no_need_vars(
            auto_parallel_main_prog, dist_params_grads, feed_var_names
        )
849 850

    @staticmethod
851 852 853
    def remove_no_need_in_startup(
        auto_parallel_main_prog, auto_parallel_startup_prog
    ):
854 855 856 857 858 859
        """Remove no need vars and ops in the startup program."""
        main_input_vars = set()
        main_ops = auto_parallel_main_prog.global_block().ops
        for op in main_ops:
            for var_name in op.input_arg_names:
                main_input_vars.add(var_name)
860

861 862 863 864 865 866 867 868 869
        startup_block = auto_parallel_startup_prog.global_block()
        startup_output_vars = set()
        startup_ops = startup_block.ops
        for op in startup_ops:
            # skip c_sync_comm_stream op
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                startup_output_vars.add(var_name)
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
        need_vars = set()
        for var_name in startup_output_vars:
            if var_name in main_input_vars:
                need_vars.add(var_name)

        startup_ops = startup_block.ops
        actual_need_vars = set()
        for idx, op in enumerate(startup_ops):
            is_need_op = False
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                if var_name in need_vars:
                    is_need_op = True
                    break
            if is_need_op:
                for var_name in op.output_arg_names:
                    actual_need_vars.add(var_name)
                for var_name in op.input_arg_names:
                    actual_need_vars.add(var_name)
891

892 893 894 895 896 897
        remove_vars = set()
        for var_name in startup_block.vars:
            if var_name not in actual_need_vars:
                remove_vars.add(var_name)
        for var in remove_vars:
            startup_block._remove_var(var)
898 899

        remove_op_idx = []
900 901 902
        vars = startup_block.vars
        for idx, op in enumerate(startup_block.ops):
            is_no_need_op = False
903
            if op.type == "c_sync_comm_stream":
904
                var_names = []
905
                for var_name in op.input_arg_names:
906 907 908
                    if var_name in vars:
                        var_names.append(var_name)
                if not var_names:
909
                    remove_op_idx.append(idx)
910 911 912 913
                else:
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, var_names)
                    op.desc.set_output(proto.outputs[0].name, var_names)
914
                continue
C
caozhou 已提交
915

916 917 918 919 920 921
            for var_name in op.output_arg_names:
                if var_name not in vars:
                    is_no_need_op = True
                    break
            if is_no_need_op:
                remove_op_idx.append(idx)
922
        for idx in remove_op_idx[::-1]:
923
            startup_block._remove_op(idx)
C
caozhou 已提交
924 925


926 927 928
class Resharder:
    """
    Reshard tensor in the program according to its distributed attribute and corresponding op distributed attribute.
929

930 931 932 933 934 935 936 937
    Args:
        auto_parallel_main_prog (Program): An auto parallel main program.
        auto_parallel_startup_prog (Program): An auto parallel startup program.
        rank_id (int): The process id.
        dist_context (DistributedContext): The distributed context of this rank.
        dist_params_grads (list): The list contains the tuple of param and grad.
        batch_size (int): The batch size. Default: None.
    """
938

939 940
    while_block_info = {}

941 942 943 944 945 946 947 948 949 950 951 952 953
    def __init__(
        self,
        auto_parallel_main_prog,
        auto_parallel_startup_prog,
        rank_id,
        dist_context,
        dist_params_grads,
        batch_size=None,
    ):
        assert isinstance(auto_parallel_main_prog, Program), (
            "The type of auto_parallel_main_prog should be Program, "
            "but got {}.".format(type(auto_parallel_main_prog))
        )
954
        if auto_parallel_startup_prog is not None:
955 956 957 958 959 960 961 962 963 964 965 966 967
            assert isinstance(auto_parallel_main_prog, Program), (
                "The type of auto_parallel_startup_prog should be Program or None, "
                "but got {}.".format(type(auto_parallel_startup_prog))
            )
        assert isinstance(
            rank_id, int
        ), "The type of rank_id should be int, " "but got {}.".format(
            type(rank_id)
        )
        assert isinstance(dist_context, DistributedContext), (
            "The type of dist_context should be DistributedContext, "
            "but got {}.".format(type(dist_context))
        )
968

969
        if batch_size is not None:
970 971 972 973 974
            assert isinstance(
                batch_size, int
            ), "The type of batch_size should be int, " "but got {}.".format(
                type(batch_size)
            )
975 976 977 978 979 980 981 982 983 984

        self._auto_parallel_main_prog = auto_parallel_main_prog
        self._auto_parallel_startup_prog = auto_parallel_startup_prog
        self._rank_id = rank_id
        self._dist_context = dist_context
        self._dist_params_grads = dist_params_grads
        self._batch_size = batch_size
        self._has_sent = {}
        self._has_recv = {}
        self._has_allgather = {}
985 986
        # to avoid reshard repeatly
        self._has_resharded = {}
987

988 989 990
    @property
    def auto_parallel_main_prog(self):
        return self._auto_parallel_main_prog
991

992 993 994
    @property
    def auto_parallel_startup_prog(self):
        return self._auto_parallel_startup_prog
995

996 997 998
    @property
    def rank_id(self):
        return self._rank_id
999

1000 1001 1002
    @property
    def dist_context(self):
        return self._dist_context
1003

1004 1005 1006
    @property
    def dist_params_grads(self):
        return self._dist_params_grads
1007

1008 1009 1010
    @property
    def batch_size(self):
        return self._batch_size
1011

1012 1013 1014
    @property
    def has_sent(self):
        return self._has_sent
1015

1016 1017 1018
    @property
    def has_recv(self):
        return self._has_recv
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    @property
    def has_allgather(self):
        return self._has_allgather

    @staticmethod
    def compute_partition_shape(complete_shape, dims_mapping, process_shape):
        """Compute the shape of partition."""
        partition_shape = []
        for idx, item in enumerate(complete_shape):
            if dims_mapping[idx] == -1:
                partition_shape.append(item)
            else:
                partition_shape.append(item // process_shape[dims_mapping[idx]])
1033

1034
        return partition_shape
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    @staticmethod
    def compute_process_index(process, process_group, process_shape):
        """Compute the index of process_shape corresponding to the process."""
        relative_process = process_group.index(process)
        process_index = []
        product = reduce(lambda x, y: x * y, process_shape)

        for i in range(len(process_shape)):
            idx = relative_process // (product // process_shape[i])
            product = product // process_shape[i]
1046 1047 1048
            relative_process = (
                relative_process - relative_process // product * product
            )
1049 1050 1051 1052 1053
            process_index.append(idx)

        return process_index

    @staticmethod
1054 1055 1056
    def compute_partition_index(
        process, complete_shape, dims_mapping, process_shape, process_group
    ):
1057 1058
        """Compute the partition index in complete tensor."""
        partition_shape = Resharder.compute_partition_shape(
1059 1060 1061 1062 1063
            complete_shape, dims_mapping, process_shape
        )
        process_index = Resharder.compute_process_index(
            process, process_group, process_shape
        )
1064 1065 1066 1067 1068 1069
        partition_index = []

        for i in range(len(complete_shape)):
            if dims_mapping[i] == -1:
                partition_index.append([0, partition_shape[i]])
            else:
1070 1071 1072 1073 1074 1075 1076
                partition_index.append(
                    [
                        process_index[dims_mapping[i]] * partition_shape[i],
                        (process_index[dims_mapping[i]] + 1)
                        * partition_shape[i],
                    ]
                )
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

        return partition_index

    @staticmethod
    def compute_concat_info(partition_index_x, partition_index_y):
        """Judge whether two partition can be concatenated and compute concatenated partition index."""
        differ_count = 0
        concat_axis = -1
        first_order = 0
        new_partition = []

        for idx, item in enumerate(partition_index_x):
            if item != partition_index_y[idx]:
                differ_count += 1
1091 1092 1093 1094
                if (
                    item[1] == partition_index_y[idx][0]
                    and item[0] < partition_index_y[idx][1]
                ):
1095 1096
                    concat_axis = idx
                    new_partition.append([item[0], partition_index_y[idx][1]])
1097 1098 1099 1100
                elif (
                    item[0] == partition_index_y[idx][1]
                    and item[1] > partition_index_y[idx][0]
                ):
1101 1102 1103 1104 1105
                    first_order = 1
                    concat_axis = idx
                    new_partition.append([partition_index_y[idx][0], item[1]])
            else:
                new_partition.append(item)
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        if differ_count == 1:
            return concat_axis, first_order, new_partition
        else:
            return -1, first_order, new_partition

    @staticmethod
    def compute_complete_shape(slice_shape, process_shape, dims_mapping):
        """compute the complete shape of the slice tensor  with its process mesh and dims mapping"""
        complete_shape = []
        for idx, item in enumerate(slice_shape):
            if dims_mapping[idx] == -1:
                complete_shape.append(item)
            else:
                complete_shape.append(item * process_shape[dims_mapping[idx]])
        return complete_shape
C
caozhou 已提交
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    @staticmethod
    def concat_partitions(partition_index_list, partition_index):
        """Concat the given partitions without inserting concat op."""
        if not partition_index_list:
            partition_index_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_index_list):
                concat_axis, _, new_partition = Resharder.compute_concat_info(
1133 1134
                    partition_index_list[i], partition_index
                )
1135 1136 1137
                if concat_axis != -1:
                    has_concat = True
                    partition_index_list.pop(i)
1138 1139 1140
                    Resharder.concat_partitions(
                        partition_index_list, new_partition
                    )
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
                    break
                i += 1
            if not has_concat:
                partition_index_list.append(partition_index)

    @staticmethod
    def change_while_op_input_and_output(auto_parallel_main_prog, dist_context):
        """Change while op input and output after the corresponding sub block ops removed"""
        for sub_block_idx in Resharder.while_block_info:
            sub_block = auto_parallel_main_prog.blocks[sub_block_idx]
            parent_while_op_id = Resharder.while_block_info[sub_block_idx][
1152 1153
                "op_id"
            ]
1154 1155 1156 1157 1158 1159 1160
            parent_block = auto_parallel_main_prog.blocks[sub_block.parent_idx]

            sub_block_op_inputs = set()
            sub_block_op_outputs = []
            for op in sub_block.ops:
                # skip the input and output of operators inserted in the reshard phase
                dist_op = dist_context.get_dist_op_for_program(op)
1161 1162 1163 1164 1165 1166
                if (
                    dist_op
                    or (op.type == "slice" and not dist_op)
                    or (op.type == "split" and not dist_op)
                    or (op.type == "assign" and not dist_op)
                ):
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
                    for var_name in op.output_arg_names:
                        if var_name not in sub_block_op_outputs:
                            sub_block_op_outputs.append(var_name)
                    for var_name in op.input_arg_names:
                        sub_block_op_inputs.add(var_name)

            # find the while op
            while_op = None
            for op in parent_block.ops:
                if op.desc.id() == parent_while_op_id and op.type == "while":
                    while_op = op
                    break

1180 1181
            if while_op is None:
                continue
1182 1183 1184 1185 1186 1187 1188 1189

            # find the actual input and output of while op
            proto = OpProtoHolder.instance().get_op_proto(while_op.type)
            new_X = []
            for var_name in while_op.input("X"):
                if var_name in sub_block_op_inputs:
                    new_X.append(var_name)
            assert new_X
1190
            new_X.sort()
1191 1192 1193 1194 1195
            while_op.desc.set_input(proto.inputs[0].name, new_X)

            new_Out = []
            for var_name in while_op.output("Out"):
                for output_name in sub_block_op_outputs[::-1]:
1196
                    if output_name.find(var_name) != -1 and (
1197 1198 1199
                        len(var_name) == len(output_name)
                        or "@RESHARD" in output_name
                    ):
1200 1201
                        if output_name not in new_Out:
                            new_Out.append(output_name)
1202 1203 1204 1205 1206 1207
            assert new_Out
            while_op.desc.set_output(proto.outputs[0].name, new_Out)

    def is_overlapped(self, shape_x, shape_y):
        """Judge whether two partitions intersect on the specified dimension."""
        overlapped = False
1208 1209 1210
        if (shape_y[0] <= shape_x[0] < shape_y[1]) or (
            shape_x[0] <= shape_y[0] < shape_x[1]
        ):
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
            overlapped = True
        return overlapped

    def is_unshard(self, dims_mapping):
        for dim in dims_mapping:
            if dim != -1:
                return False
        return True

    def is_special_op(self, op):
1221
        global _g_special_ops, _g_gradient_clip_ops
Z
zhaoyingli 已提交
1222 1223
        if op.type in _g_special_ops:
            return True
1224
        if is_gradient_clip_op(op) and op.type in _g_gradient_clip_ops:
1225
            return True
Z
zhaoyingli 已提交
1226 1227
        return False

1228 1229
    def is_condition_replicative(self, op):
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
1230 1231 1232 1233 1234

        if op.type == "while":
            input_cond = op.input("Condition")
        elif op.type == "conditional_block":
            input_cond = op.input("Cond")
1235 1236

        # the dims mapping of condition tensor should be replicative
1237
        for var_name in input_cond:
1238 1239 1240
            var = get_var_with_recursion(
                var_name, sub_block, self.auto_parallel_main_prog
            )
1241 1242 1243 1244 1245 1246
            dist_tensor = self.dist_context.get_dist_tensor_for_program(var)
            tensor_dist_attr = dist_tensor.dist_attr
            var_dims_mapping = tensor_dist_attr.dims_mapping
            for dim in var_dims_mapping:
                if dim != -1:
                    return False
1247

1248 1249
        return True

1250
    def need_reshard(self, dist_tensor, dist_attr, op_input=True, dist_op=None):
1251 1252 1253 1254 1255
        """Judge the tensor whether needs to be resharded."""
        is_reshard = False
        tensor_dist_attr = dist_tensor.dist_attr
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        tensor_process_mesh = tensor_dist_attr.process_mesh
1256 1257 1258 1259

        # dist_attr is [process_mesh, dims_mapping] and process_mesh is not a union
        op_process_mesh = dist_attr[0]

1260
        if op_input:
1261
            op_input_dims_mapping = dist_attr[1]
1262
            if all(
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
                map(
                    lambda x: x,
                    [
                        tensor_dims_mapping,
                        tensor_process_mesh,
                        op_input_dims_mapping,
                        op_process_mesh,
                    ],
                )
            ):
1273
                # judge whether need reshard by dims_mapping
1274
                if tensor_dims_mapping != op_input_dims_mapping:
1275 1276 1277 1278
                    if (
                        tensor_process_mesh
                        not in self.dist_context.process_meshes
                    ):
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
                        # assert whether -1 when union.
                        for item in tensor_dims_mapping:
                            if item != -1:
                                raise ValueError(
                                    "The dim must be -1 when tensor process mesh is a union."
                                )
                        # tensor process_mesh: [0, 1, 2, 3], dims_mapping: [-1, -1]
                        # op process_mesh: [4, 5], dims_mapping: [0, -1]
                        # reshard is not supported such as above
                        if not is_reshard:
                            return is_reshard
1290
                        else:
1291 1292 1293 1294 1295 1296 1297 1298
                            raise ValueError(
                                "it is not supported that tensor process mesh is a union and needs reshard."
                            )
                    is_reshard = True

                # judge whether need reshard by process_mesh
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1299
        else:
1300
            op_output_dims_mapping = dist_attr[1]
1301
            if all(
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
                map(
                    lambda x: x,
                    [
                        tensor_dims_mapping,
                        tensor_process_mesh,
                        op_output_dims_mapping,
                        op_process_mesh,
                    ],
                )
            ):
1312 1313 1314 1315
                if tensor_dims_mapping != op_output_dims_mapping:
                    raise ValueError(
                        "It is not supported that tensor dims mapping is different from op output dims mapping."
                    )
1316 1317
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1318 1319 1320 1321

        return is_reshard

    def get_op_process_meshes(self, op):
1322
        """Get sub process meshes of the given op if op process mesh is a union."""
1323 1324 1325
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        op_process_mesh = dist_op.dist_attr.process_mesh
1326

1327
        for process_mesh in self.dist_context.process_meshes:
1328 1329 1330
            if set(process_mesh.processes) & (
                set(op_process_mesh.processes)
            ) and len(process_mesh.processes) < len(op_process_mesh.processes):
1331 1332 1333 1334 1335 1336 1337 1338
                process_meshes.append(process_mesh)

        # it means the process mesh is not a union when process meshes is null
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        return process_meshes

1339
    def find_op_desc_seq(self, dist_tensor, dist_attr, serial=False):
1340 1341 1342 1343 1344
        """
        Find the op description sequence to reshard the source tensor for matching the op requirement.

        Args:
            dist_tensor (DistributedTensor): A distributed tensor.
1345 1346
            dist_attr (list): A list contains process_mesh and dims_mapping such as [process_mesh, dims_mapping].
            serial (bool): If serial is true, the dist tensor and dist op come from serial program. Otherwise, they come from auto program.
1347 1348 1349 1350 1351 1352 1353 1354

        Returns:
            Dict, the dict represents the required op description sequence corresponding to process, The key of dict is
            process and value is a list containing op description.
        """
        tensor_dist_attr = dist_tensor.dist_attr
        source_tensor = dist_tensor.serial_tensor
        tensor_name = source_tensor.name
1355

1356 1357 1358 1359 1360
        source_dims_mapping = tensor_dist_attr.dims_mapping
        source_process_mesh = tensor_dist_attr.process_mesh
        source_process_group = source_process_mesh.processes
        source_process_shape = source_process_mesh.topology

1361 1362
        target_process_mesh = dist_attr[0]
        target_dims_mapping = dist_attr[1]
1363 1364 1365 1366
        target_process_group = target_process_mesh.processes
        target_process_shape = target_process_mesh.topology

        if source_tensor.shape[0] < 0:
1367
            assert source_tensor.shape[0] == -1
1368 1369 1370 1371
            new_shape = list(source_tensor.shape)
            new_shape[0] = self.batch_size
            source_tensor.desc.set_shape(new_shape)

1372 1373 1374 1375 1376 1377 1378
        complete_shape = (
            Resharder.compute_complete_shape(
                source_tensor.shape, source_process_shape, source_dims_mapping
            )
            if not serial
            else source_tensor.shape
        )
1379 1380 1381
        op_desc_seq = {}

        # TODO: if the target process group has the same process with source process group
1382 1383 1384
        if set(target_process_group).intersection(
            set(source_process_group)
        ) and set(target_process_group).difference(set(source_process_group)):
1385 1386 1387 1388 1389
            pass

        elif target_process_group != source_process_group:
            partition_process_mapping_list = []
            for source_process in source_process_group:
1390
                # get partition index of source process
1391 1392 1393 1394 1395 1396 1397
                source_partition_index = Resharder.compute_partition_index(
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1398
                if not partition_process_mapping_list:
1399
                    # the item in partition_process_mapping_list is source_partition_index, which processes and whether has been used
1400
                    partition_process_mapping_list.append(
1401 1402
                        [source_partition_index, [source_process], [False]]
                    )
1403
                else:
1404
                    partition_list = list(
1405 1406
                        [item[0] for item in partition_process_mapping_list]
                    )
1407
                    process_list = list(
1408 1409
                        [item[1] for item in partition_process_mapping_list]
                    )
1410
                    has_used = list(
1411 1412
                        [item[2] for item in partition_process_mapping_list]
                    )
1413

1414 1415 1416 1417 1418
                    if partition_list.count(source_partition_index) == 1:
                        index = partition_list.index(source_partition_index)
                        process_list[index].append(source_process)
                        has_used[index].append(False)
                    else:
1419
                        partition_process_mapping_list.append(
1420 1421
                            [source_partition_index, [source_process], [False]]
                        )
1422 1423

            for target_process in target_process_group:
1424
                # has_sent means the source_partition_index has been sent to target_process
1425 1426
                has_sent = []
                target_partition_index = Resharder.compute_partition_index(
1427 1428 1429 1430 1431 1432
                    target_process,
                    complete_shape,
                    target_dims_mapping,
                    target_process_shape,
                    target_process_group,
                )
1433 1434 1435 1436
                partition_index_list = []
                all_partition_index_list = []
                for source_process in source_process_group:
                    source_partition_index = Resharder.compute_partition_index(
1437 1438 1439 1440 1441 1442
                        source_process,
                        complete_shape,
                        source_dims_mapping,
                        source_process_shape,
                        source_process_group,
                    )
1443
                    to_send_process = None
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
                    if (
                        all(
                            _
                            for _ in list(
                                map(
                                    self.is_overlapped,
                                    source_partition_index,
                                    target_partition_index,
                                )
                            )
                        )
                        and source_partition_index not in has_sent
                    ):
                        idx = list(
                            [item[0] for item in partition_process_mapping_list]
                        ).index(source_partition_index)
                        has_used = list(
                            [item[2] for item in partition_process_mapping_list]
                        )[idx]
                        process_list = list(
                            [item[1] for item in partition_process_mapping_list]
                        )[idx]
1466 1467 1468 1469 1470 1471 1472
                        i = 0
                        while i < len(has_used):
                            if not has_used[i]:
                                to_send_process = process_list[i]
                                has_used[i] = True
                                break
                            i += 1
1473

1474 1475 1476 1477
                        if i == len(has_used):
                            has_used = list(map(lambda x: False, has_used))
                            to_send_process = process_list[0]
                            has_used[0] = True
1478 1479 1480
                        assert (
                            to_send_process is not None
                        ), "Failed to find the send process."
1481 1482 1483 1484 1485 1486 1487 1488

                        if to_send_process not in op_desc_seq.keys():
                            op_desc_seq[to_send_process] = []
                        if target_process not in op_desc_seq.keys():
                            op_desc_seq[target_process] = []
                        all_partition_index_list.append(source_partition_index)

                        # append send and recv op desc
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
                        is_bool = dist_tensor.serial_tensor.dtype == paddle.bool
                        send_op_desc = SendOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
                        recv_op_desc = RecvOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
1502 1503 1504
                        op_desc_seq[to_send_process].append(send_op_desc)
                        op_desc_seq[target_process].append(recv_op_desc)
                        has_sent.append(source_partition_index)
1505 1506 1507
                        Resharder.concat_partitions(
                            partition_index_list, source_partition_index
                        )
1508 1509 1510

                # append concat op desc
                op_desc_seq[target_process].append(
1511 1512
                    ConcatOpDesc(all_partition_index_list)
                )
1513 1514 1515 1516 1517 1518

                # append slice op desc
                slice_starts = []
                slice_ends = []
                slices_axes = []
                concatenated_partition_index = partition_index_list[0]
1519 1520
                to_slice_tensor_shape = []

1521
                for idx, item in enumerate(concatenated_partition_index):
1522 1523 1524
                    slice_starts.append(
                        target_partition_index[idx][0] - item[0]
                    )
1525 1526
                    slice_ends.append(target_partition_index[idx][1] - item[0])
                    slices_axes.append(idx)
1527 1528
                    to_slice_tensor_shape.append(item[1] - item[0])

1529
                op_desc_seq[target_process].append(
1530 1531 1532 1533 1534 1535 1536
                    SliceOpDesc(
                        slice_starts,
                        slice_ends,
                        slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                )
1537

1538
        # in the same process group, it will use allgahther and slice op.
1539
        else:
1540
            # NOTE: It just supports even partition scene.
1541 1542 1543 1544 1545
            partition_index_list = []
            all_partition_index_list = []
            process_index = []
            for source_process in source_process_group:
                source_partition_index = Resharder.compute_partition_index(
1546 1547 1548 1549 1550 1551
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1552 1553
                if source_partition_index not in partition_index_list:
                    partition_index_list.append(source_partition_index)
1554 1555 1556 1557 1558 1559 1560 1561
                    process_index.append(
                        [
                            [
                                source_process,
                            ],
                            source_partition_index,
                        ]
                    )
1562
                else:
1563 1564 1565
                    process_index[
                        partition_index_list.index(source_partition_index)
                    ][0].append(source_process)
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

            for i in range(len(process_index[0][0])):
                group = []
                for j in range(len(process_index)):
                    group.append(process_index[j][0][i])
                    if i == 0:
                        all_partition_index_list.append(process_index[j][1])
                for process in group:
                    # append slice op desc
                    slice_starts = []
                    slice_ends = []
                    slices_axes = []
                    target_partition_index = Resharder.compute_partition_index(
1579 1580 1581 1582 1583 1584
                        process,
                        complete_shape,
                        target_dims_mapping,
                        target_process_shape,
                        target_process_group,
                    )
1585 1586 1587 1588 1589
                    for idx, item in enumerate(target_partition_index):
                        slice_starts.append(item[0])
                        slice_ends.append(item[1])
                        slices_axes.append(idx)

1590
                    to_slice_tensor_shape = dist_tensor.global_sizes()
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
                    slice_op_desc = SliceOpDesc(
                        starts=slice_starts,
                        ends=slice_ends,
                        axes=slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                    allgather_shape = (
                        None
                        if not serial
                        else dist_tensor.local_sizes(rank=process)
                    )
                    op_desc_seq[process] = (
                        [
                            AllGatherOpDesc(
                                group=group,
                                shape=allgather_shape,
                                is_bool=(source_tensor.dtype == paddle.bool),
                            ),
                            ConcatOpDesc(
                                partition_index_list=all_partition_index_list
                            ),
                            slice_op_desc,
                        ]
                        if len(group) > 1
                        else [slice_op_desc]
                    )
1617 1618 1619

        return op_desc_seq

1620 1621 1622
    def parse_op_desc(
        self, block, op_desc_seq, var_name, reshard_op, dist_attr
    ):
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
        """Parse op desc sequence and insert op in the block"""
        tensor_list = []
        partition_tensor_list = []
        if self.rank_id not in op_desc_seq.keys():
            return
        op_desc_list = op_desc_seq[self.rank_id]

        idx = None
        for index, op in list(enumerate(block.ops)):
            if op.desc.id == reshard_op.desc.id:
                idx = index
                break
1635 1636 1637 1638 1639
        assert (
            idx is not None
        ), "The op for reshard cannot be found in the rank {} program.".format(
            self.rank_id
        )
1640 1641

        matched_op = block.ops[idx]
1642 1643 1644
        source_tensor = get_var_with_recursion(
            var_name, block, self.auto_parallel_main_prog
        )
1645 1646 1647 1648
        for op_desc in op_desc_list:
            if isinstance(op_desc, AllGatherOpDesc):  # noqa: F401
                if var_name not in self.has_allgather.keys():
                    self.has_allgather[var_name] = []
1649 1650 1651 1652 1653
                if not self.has_allgather[
                    var_name
                ] or op_desc.group not in list(
                    map(lambda x: x[0], self.has_allgather[var_name])
                ):
1654 1655 1656
                    if op_desc.is_bool:
                        # for bool data allgather, cast to int64 -> allgather -> cast bool
                        out_cast = Inserter.insert_cast_op(
1657 1658 1659 1660 1661 1662
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
1663
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1664 1665 1666 1667 1668 1669
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1670 1671 1672 1673
                        idx += idx_offset
                        tensor_name_list = []
                        for var in tensor_list:
                            out_cast = Inserter.insert_cast_op(
1674 1675 1676 1677 1678 1679
                                block,
                                idx,
                                var,
                                reshard_op.attr('op_role'),
                                paddle.bool,
                            )
1680 1681 1682
                            tensor_name_list.append(out_cast.name)
                            idx += 1
                        self.has_allgather[var_name].append(
1683 1684
                            [op_desc.group, tensor_name_list]
                        )
1685 1686
                    else:
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1687 1688 1689 1690 1691 1692
                            block,
                            idx,
                            source_tensor,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1693 1694 1695
                        idx += idx_offset
                        tensor_name_list = [var.name for var in tensor_list]
                        self.has_allgather[var_name].append(
1696 1697
                            [op_desc.group, tensor_name_list]
                        )
1698 1699 1700 1701
                else:
                    for item in self.has_allgather[var_name]:
                        if op_desc.group == item[0]:
                            tensor_list = [
C
caozhou 已提交
1702
                                get_var_with_recursion(
1703 1704 1705 1706
                                    var_name,
                                    block,
                                    self.auto_parallel_main_prog,
                                )
1707 1708 1709
                                for var_name in item[1]
                            ]
                            break
1710 1711 1712
                assert (
                    tensor_list
                ), "The result of parsing allgather op should not be None."
1713 1714 1715 1716 1717

            elif isinstance(op_desc, SendOpDesc):
                if var_name not in self.has_sent.keys():
                    self.has_sent[var_name] = []
                if op_desc.dst not in self.has_sent[var_name]:
1718 1719
                    if op_desc.is_bool:
                        out_cast = Inserter.insert_cast_op(
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
                        Inserter.insert_send_op(
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1734 1735
                        idx += 2
                    else:
1736 1737 1738 1739 1740 1741 1742 1743
                        Inserter.insert_send_op(
                            block,
                            idx,
                            source_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1744
                        idx += 1
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
                    self.has_sent[var_name].append(op_desc.dst)

            elif isinstance(op_desc, RecvOpDesc):
                if var_name not in self.has_recv.keys():
                    self.has_recv[var_name] = {}
                if op_desc.src not in self.has_recv[var_name].keys():
                    partition_index = op_desc.partition_index
                    shape = []
                    for index in partition_index:
                        shape.append(index[1] - index[0])
1755 1756 1757 1758 1759 1760 1761
                    if op_desc.is_bool:
                        # for bool data, recv int64 -> cast to bool
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=paddle.int64,
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1772
                        out_cast = Inserter.insert_cast_op(
1773 1774 1775 1776 1777 1778
                            block,
                            idx + 1,
                            recv_tensor,
                            reshard_op.attr('op_role'),
                            paddle.bool,
                        )
1779 1780 1781 1782 1783 1784 1785 1786 1787
                        tensor_list.append(out_cast)
                        idx += 2
                        self.has_recv[var_name][op_desc.src] = out_cast
                    else:
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=source_tensor.dtype,
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1798 1799 1800 1801 1802

                        # for lod tensor, need reset lod after received
                        if recv_tensor.lod_level != 0:
                            set_lod = False
                            # use data lod to reset tensor lod
1803 1804 1805
                            for (
                                tmp_block
                            ) in self.auto_parallel_main_prog.blocks:
1806 1807
                                for tmp_var_name in tmp_block.vars:
                                    tmp_var = tmp_block.vars[tmp_var_name]
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
                                    if (
                                        tmp_var.is_data
                                        and tmp_var.lod_level
                                        == recv_tensor.lod_level
                                    ):
                                        reset_lod_out = (
                                            Inserter.insert_reset_lod_op(
                                                block,
                                                idx + 1,
                                                recv_tensor,
                                                tmp_var,
                                                reshard_op.attr('op_role'),
                                            )
                                        )
1822 1823 1824
                                        tensor_list.append(reset_lod_out)
                                        idx += 2
                                        self.has_recv[var_name][
1825 1826
                                            op_desc.src
                                        ] = reset_lod_out
1827 1828 1829 1830 1831 1832 1833 1834 1835
                                        set_lod = True
                                        break
                                if set_lod:
                                    break
                            assert set_lod is True
                        else:
                            tensor_list.append(recv_tensor)
                            idx += 1
                            self.has_recv[var_name][op_desc.src] = recv_tensor
1836 1837 1838 1839 1840 1841 1842 1843
                else:
                    tensor_list.append(self.has_recv[var_name][op_desc.src])

            elif isinstance(op_desc, ConcatOpDesc):
                partition_index_list = op_desc.partition_index_list
                idx_list = [idx]
                for index, tensor in enumerate(tensor_list):
                    Inserter.concat_partitions_with_op(
1844 1845 1846 1847 1848 1849 1850
                        partition_tensor_list,
                        tensor,
                        partition_index_list[index],
                        block,
                        idx_list,
                        reshard_op.attr('op_role'),
                    )
1851 1852 1853
                idx = idx_list[0]

            elif isinstance(op_desc, SliceOpDesc):
1854 1855 1856 1857 1858 1859 1860 1861
                assert (
                    len(partition_tensor_list) == 1 or not partition_tensor_list
                )
                to_slice_tensor = (
                    partition_tensor_list[0][0]
                    if len(partition_tensor_list) == 1
                    else source_tensor
                )
1862 1863 1864 1865 1866 1867 1868 1869 1870
                new_name = unique_name.generate(var_name + "@RESHARD")
                target_tensor = Inserter.insert_slice_op(
                    block,
                    idx,
                    to_slice_tensor,
                    starts=op_desc.starts,
                    ends=op_desc.ends,
                    axes=op_desc.axes,
                    new_var_name=new_name,
1871 1872
                    op_role=reshard_op.attr('op_role'),
                )
1873

1874 1875 1876
                process_mesh = dist_attr[0]
                dims_mapping = dist_attr[1]

1877 1878 1879 1880
                tensor_attr = TensorDistributedAttribute()
                tensor_attr.dims_mapping = dims_mapping
                tensor_attr.process_mesh = process_mesh
                self.dist_context.set_tensor_dist_attr_for_program(
1881 1882
                    target_tensor, tensor_attr
                )
1883

1884
                if matched_op.type == "while":
1885
                    # var_reshard_mapping means the while op input need be changed to
1886 1887 1888 1889 1890 1891
                    if (
                        "var_reshard_mapping"
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ].keys()
                    ):
1892
                        Resharder.while_block_info[op.attr("sub_block").id][
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
                            "var_reshard_mapping"
                        ] = {}
                    if (
                        var_name
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ]["var_reshard_mapping"].keys()
                    ):
                        Resharder.while_block_info[op.attr("sub_block").id][
                            "var_reshard_mapping"
                        ][var_name] = []
1904
                    Resharder.while_block_info[op.attr("sub_block").id][
1905 1906
                        "var_reshard_mapping"
                    ][var_name].append([dist_attr, target_tensor.name])
1907 1908 1909

                # rename op input name according to new name
                for op in block.ops:
1910 1911
                    # just for while op
                    while_op_X_append = []
1912
                    for name in op.input_arg_names:
1913 1914 1915
                        op_dist_attr = (
                            self.dist_context.get_op_dist_attr_for_program(op)
                        )
1916 1917
                        if name == var_name and op_dist_attr is not None:
                            if op.desc.id() == matched_op.desc.id():
1918 1919 1920 1921
                                if matched_op.type == "while":
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
1922 1923 1924 1925 1926
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
1927
                                    op_dist_attr.set_input_dist_attr(
1928 1929
                                        new_name, op_input_dist_attr
                                    )
1930
                                    op_dist_attr.set_input_dims_mapping(
1931 1932 1933 1934 1935 1936
                                        new_name, dims_mapping
                                    )
                                    if (
                                        old_name
                                        in op_dist_attr._inputs_dist_attrs
                                    ):
1937
                                        op_dist_attr.del_input_dist_attr(
1938 1939
                                            old_name
                                        )
1940 1941 1942 1943
                                    while_op_X_append.append(new_name)
                                    continue
                                else:
                                    op.desc._rename_input(
1944 1945
                                        name, target_tensor.name
                                    )
1946 1947 1948
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
1949 1950 1951 1952 1953
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
1954
                                    op_dist_attr.set_input_dist_attr(
1955 1956
                                        new_name, op_input_dist_attr
                                    )
1957
                                    op_dist_attr.set_input_dims_mapping(
1958 1959
                                        new_name, dims_mapping
                                    )
1960 1961
                                    op_dist_attr.del_input_dist_attr(old_name)
                                    continue
1962 1963

                            op_process_mesh = op_dist_attr.process_mesh
1964 1965 1966
                            op_input_dims_mapping = (
                                op_dist_attr.get_input_dims_mapping(var_name)
                            )
1967
                            # NOTE: For op whose process mesh is a union, its input will not be renamed by other op reshard result now which means that it will have more reshard operation.
1968 1969 1970 1971
                            if (
                                op_process_mesh == process_mesh
                                and op_input_dims_mapping == dims_mapping
                            ):
1972
                                op.desc._rename_input(name, target_tensor.name)
1973 1974 1975
                                old_name = name
                                new_name = target_tensor.name
                                assert old_name != new_name
1976 1977 1978
                                op_input_dist_attr = (
                                    op_dist_attr.get_input_dist_attr(old_name)
                                )
1979
                                op_dist_attr.set_input_dist_attr(
1980 1981
                                    new_name, op_input_dist_attr
                                )
1982
                                op_dist_attr.set_input_dims_mapping(
1983 1984
                                    new_name, dims_mapping
                                )
1985
                                op_dist_attr.del_input_dist_attr(old_name)
1986

1987 1988 1989
                    # for while op, the input X should reset
                    if while_op_X_append:
                        proto = OpProtoHolder.instance().get_op_proto(op.type)
1990 1991 1992 1993
                        op.desc.set_input(
                            proto.inputs[0].name,
                            op.input("X") + while_op_X_append,
                        )
1994

1995
    def _get_subblock_input_attrs(self, op, var_name):
1996
        # NOTE: Multi while loop is not supported
1997
        assert op.type in _g_subblock_ops
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        input_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.input_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    input_dims_mapping = dist_attr.get_input_dims_mapping(
2011 2012
                        var_name
                    )
2013 2014
                    has_exist = False
                    for input_attr in input_attrs:
2015 2016 2017 2018
                        if (
                            process_mesh == input_attr[0]
                            and input_dims_mapping == input_attr[1]
                        ):
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
                            has_exist = True
                            break
                    if not has_exist:
                        input_attrs.append([process_mesh, input_dims_mapping])
        return input_attrs

    def _get_common_op_input_attrs(self, op, var_name):
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        dist_attr = dist_op.dist_attr
        op_process_mesh = dist_attr.process_mesh
        for process_mesh in self.dist_context.process_meshes:
2031 2032 2033
            if set(process_mesh.processes) & (
                set(op_process_mesh.processes)
            ) and len(process_mesh.processes) < len(op_process_mesh.processes):
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
                process_meshes.append(process_mesh)

        # it means that the process mesh is not a union when process meshes is none
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        input_dims_mapping = dist_attr.get_input_dims_mapping(var_name)
        input_attrs = []
        for process_mesh in process_meshes:
            input_attrs.append([process_mesh, input_dims_mapping])

        return input_attrs

    def get_op_input_attrs(self, op, var_name):
        op_input_attrs = []
2049

2050 2051
        if op.type in _g_subblock_ops:
            op_input_attrs = self._get_subblock_input_attrs(op, var_name)
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
        else:
            op_input_attrs = self._get_common_op_input_attrs(op, var_name)

        assert op_input_attrs

        return op_input_attrs

    def _remove_global_process_mesh(self):
        """Remove global process mesh from dist_context.process_meshes"""
        processes = set()
        process_mesh_count = len(self.dist_context.process_meshes)
        if process_mesh_count > 1:
            global_process_mesh_idx = None
            for process_mesh in self.dist_context.process_meshes:
                for process in process_mesh.processes:
                    processes.add(process)
            for idx, process_mesh in enumerate(
2069 2070
                self.dist_context.process_meshes
            ):
2071 2072 2073
                if len(set(process_mesh.processes)) == len(processes):
                    global_process_mesh_idx = idx
                    break
2074

2075
            if global_process_mesh_idx is not None:
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
                is_removed = False
                global_mesh = self.dist_context.process_meshes[idx]
                for i, mesh in enumerate(self.dist_context.process_meshes):
                    if i == idx:
                        continue
                    if set(mesh.processes) < set(global_mesh.processes):
                        is_removed = True

                if is_removed:
                    self.dist_context.process_meshes.pop(idx)
2086 2087 2088 2089

    def _change_subblock_op_input_and_output(self, block_idx, block):
        if "var_reshard_mapping" in Resharder.while_block_info[block_idx]:
            var_reshard_mapping = Resharder.while_block_info[block_idx][
2090 2091
                "var_reshard_mapping"
            ]
2092 2093 2094 2095 2096 2097 2098 2099
            for op in block.ops:
                for var_name in op.input_arg_names:
                    if var_name in var_reshard_mapping:
                        # in while sub block, the union process mesh is not split before reshard sub block
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        dist_attr = dist_op.dist_attr
                        target_name = None
                        for item in var_reshard_mapping[var_name]:
2100 2101 2102 2103 2104
                            if (
                                dist_attr.process_mesh == item[0][0]
                                and dist_attr.get_input_dims_mapping(var_name)
                                == item[0][1]
                            ):
2105 2106 2107 2108 2109 2110 2111
                                target_name = item[1]
                                break
                        if target_name is None:
                            continue
                        else:
                            op.desc._rename_input(var_name, target_name)
                            dist_op = self.dist_context.get_dist_op_for_program(
2112 2113
                                op
                            )
2114 2115 2116 2117
                            op_dist_attr = dist_op.dist_attr
                            old_name = var_name
                            new_name = target_name
                            assert old_name != new_name
2118 2119 2120
                            op_input_dist_attr = (
                                op_dist_attr.get_input_dist_attr(old_name)
                            )
2121
                            op_dist_attr.set_input_dist_attr(
2122 2123
                                new_name, op_input_dist_attr
                            )
2124 2125 2126 2127 2128 2129 2130
                            op_dist_attr.del_input_dist_attr(old_name)

                # the outputs also need to be renamed when the output name is the same with input name in inplace op
                for var_name in op.output_arg_names:
                    # if the tensor has been resharded multiply, it is not supported now.
                    if var_name in var_reshard_mapping:
                        if len(var_reshard_mapping[var_name]) > 1:
2131
                            raise ValueError(
2132
                                "The scene is not supported that the output is inplaced and the tensor has been resharded multiply when as input."
2133
                            )
2134 2135 2136 2137 2138 2139 2140 2141 2142
                        target_name = var_reshard_mapping[var_name][0][1]

                        op.desc._rename_output(var_name, target_name)
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        op_dist_attr = dist_op.dist_attr
                        old_name = var_name
                        new_name = target_name
                        assert old_name != new_name
                        op_output_dist_attr = op_dist_attr.get_output_dist_attr(
2143 2144
                            old_name
                        )
2145
                        op_dist_attr.set_output_dist_attr(
2146 2147
                            new_name, op_output_dist_attr
                        )
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
                        op_dist_attr.del_output_dist_attr(old_name)

    def _reshard_input(self, block):
        idx = 0
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]

            if self.is_special_op(op):
                idx += 1
                continue

            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None:
2162 2163 2164
                op_input_dist_attrs = (
                    []
                )  # [(op_process_mesh, op_input_dims_mapping), (op_process_mesh, op_input_dims_mapping)]
2165
                if op.type in _g_subblock_ops:
2166 2167 2168 2169
                    if not self.is_condition_replicative(op):
                        raise ValueError(
                            "Please check the condition due to the dims mapping is not replicative."
                        )
2170 2171 2172 2173
                    if (
                        op.attr("sub_block").id
                        not in Resharder.while_block_info
                    ):
2174
                        Resharder.while_block_info[op.attr("sub_block").id] = {}
2175 2176 2177
                    Resharder.while_block_info[op.attr("sub_block").id][
                        "op_id"
                    ] = op.desc.id()
2178 2179 2180 2181

                if op.type == "while":
                    # condition var process mesh is the same with op and dims_mapping is replicative, so it do not need reshard
                    input_var_names = op.input("X")
2182 2183
                elif op.type == "conditional_block":
                    input_var_names = op.input("Input")
2184
                else:
2185 2186 2187 2188 2189 2190
                    input_var_names = op.input_arg_names
                # to avoid while op X order different
                input_var_names.sort()

                idx_offset = 0
                for var_name in input_var_names:
2191 2192
                    # skip lod_tensor_blocking_queue_? name
                    if "lod_tensor_blocking_queue" in var_name:
2193
                        continue
2194 2195 2196
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2197
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2198 2199
                        var
                    )
2200 2201 2202

                    # judge whether union tensor dims_mapping all -1
                    is_union_process_mesh_tensor = False
2203 2204 2205 2206 2207
                    if (
                        dist_tensor.dist_attr.process_mesh
                        not in self.dist_context.process_meshes
                        and self.dist_context.process_meshes
                    ):
2208 2209
                        is_union_process_mesh_tensor = True
                        assert dist_tensor.dist_attr.dims_mapping.count(
2210 2211
                            -1
                        ) == len(dist_tensor.dist_attr.dims_mapping)
2212 2213 2214 2215 2216 2217 2218 2219 2220

                    op_input_attrs = self.get_op_input_attrs(op, var_name)
                    for input_attr in op_input_attrs:
                        input_process_mesh = None

                        # deal with union tensor
                        if is_union_process_mesh_tensor:
                            # if op process mesh is subset of union tensor process mesh, need no reshard
                            if set(input_attr[0].processes) <= set(
2221
                                dist_tensor.dist_attr.process_mesh.processes
2222 2223
                            ):
                                continue
2224 2225

                        if dist_tensor is not None and self.need_reshard(
2226 2227
                            dist_tensor, input_attr
                        ):
2228
                            reshard_op_desc = self.find_op_desc_seq(
2229 2230 2231 2232 2233
                                dist_tensor, input_attr
                            )
                            self.parse_op_desc(
                                block, reshard_op_desc, var_name, op, input_attr
                            )
2234
                            cur_op_count = len(block.ops)
2235 2236 2237
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2238
                            pre_op_count = cur_op_count
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
                idx = idx + idx_offset + 1
            else:
                idx += 1

    def _hadnle_recv(self, block, idx, var, op, send_rank, recv_rank):
        if self.rank_id == recv_rank:
            # if recv bool data, recv then cast
            if var.dtype == paddle.bool:
                recv_cast_out = block.create_var(
                    name=unique_name.generate(var.name + "@recv"),
                    shape=var.shape,
                    lod_level=var.lod_level,
                    dtype=paddle.int64,
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
                    type=var.type,
                )
                Inserter.insert_recv_op(
                    block,
                    idx + 1,
                    recv_cast_out,
                    send_rank,
                    recv_rank,
                    op.attr('op_role'),
                )
2262 2263 2264 2265 2266 2267
                reset_lod_out = None
                if var.lod_level != 0:
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2268 2269 2270 2271
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2272
                                reset_lod_out = block.create_var(
2273 2274 2275
                                    name=unique_name.generate(
                                        var.name + "@RESETLOD"
                                    ),
2276 2277 2278
                                    shape=recv_cast_out.shape,
                                    type=recv_cast_out.type,
                                    dtype=recv_cast_out.dtype,
2279 2280
                                    lod_level=recv_cast_out.lod_level,
                                )
2281 2282 2283 2284
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2285
                                    inputs={'X': recv_cast_out, 'Y': tmp_var},
2286
                                    outputs={'Out': reset_lod_out},
2287 2288
                                    attrs={'op_role': op.attr("op_role")},
                                )
2289 2290 2291 2292 2293 2294 2295
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True

                # cast int64 to bool
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
                block._insert_op(
                    idx + 2,
                    type='cast',
                    inputs={
                        'X': [recv_cast_out]
                        if reset_lod_out is None
                        else [reset_lod_out]
                    },
                    outputs={'Out': [var]},
                    attrs={
                        'in_dtype': recv_cast_out.dtype,
                        'out_dtype': var.dtype,
                        'op_role': op.attr('op_role'),
                    },
                )
2311 2312 2313 2314 2315 2316 2317
            else:
                if var.lod_level != 0:
                    recv_out = block.create_var(
                        name=unique_name.generate(var.name + "@recv"),
                        shape=var.shape,
                        lod_level=var.lod_level,
                        dtype=var.int64,
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
                        type=var.type,
                    )
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        recv_out,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2328 2329 2330 2331
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2332 2333 2334 2335
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2336 2337 2338 2339
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2340
                                    inputs={'X': recv_out, 'Y': tmp_var},
2341
                                    outputs={'Out': var},
2342 2343
                                    attrs={'op_role': op.attr("op_role")},
                                )
2344 2345 2346 2347 2348
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True
2349
                else:
2350 2351 2352 2353 2354 2355 2356 2357
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        var,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2358 2359 2360

    def _handle_send(self, block, idx, var, op, send_rank, recv_rank):
        if var.dtype == paddle.bool:
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
            cast_out = Inserter.insert_cast_op(
                block, idx + 1, var, op.attr('op_role'), paddle.int64
            )
            Inserter.insert_send_op(
                block,
                idx + 2,
                cast_out,
                send_rank,
                recv_rank,
                op.attr('op_role'),
            )
2372
        else:
2373 2374 2375
            Inserter.insert_send_op(
                block, idx + 1, var, send_rank, recv_rank, op.attr('op_role')
            )
2376 2377 2378 2379 2380 2381

    def _reshard_output(self, block):
        # insert send and recv op if output process mesh is different from tensor process mesh
        idx = 0
        # skip reader and ops whose process mesh is union
        skip_ops = [
2382 2383 2384 2385 2386
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
            "write_to_array",
            "read_from_array",
2387 2388 2389
        ]
        global _g_special_ops
        skip_ops += _g_special_ops
2390
        skip_ops += _g_subblock_ops
2391 2392 2393 2394 2395 2396 2397
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None and op.type not in skip_ops:
                idx_offset = 0
                for var_name in op.output_arg_names:
2398 2399 2400
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2401
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2402 2403
                        var
                    )
2404 2405 2406
                    tensor_process_mesh = dist_tensor.dist_attr.process_mesh
                    output_attr = [
                        dist_op.dist_attr.process_mesh,
2407
                        dist_op.dist_attr.get_output_dims_mapping(var_name),
2408 2409
                    ]
                    if dist_tensor is not None and self.need_reshard(
2410 2411
                        dist_tensor, output_attr, False
                    ):
2412
                        tensor_processes = set(
2413 2414 2415 2416 2417
                            tensor_process_mesh.processes
                        ) - (
                            set(tensor_process_mesh.processes)
                            & set(output_attr[0].processes)
                        )
2418 2419
                        if tensor_processes:
                            if len(tensor_processes) != len(
2420 2421
                                output_attr[0].processes
                            ):
2422
                                if dist_tensor.dist_attr.dims_mapping.count(
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
                                    -1
                                ) != len(
                                    dist_tensor.dist_attr.dims_mapping
                                ) or output_attr[
                                    1
                                ].count(
                                    -1
                                ) != len(
                                    output_attr[1]
                                ):
2433
                                    raise ValueError(
2434 2435
                                        "The dims_mapping must be -1"
                                    )
2436 2437
                                else:
                                    for index, tensor_process in enumerate(
2438 2439
                                        tensor_processes
                                    ):
2440 2441 2442
                                        recv_rank = tensor_process
                                        actual_index = index
                                        if index >= len(
2443 2444
                                            output_attr[0].processes
                                        ):
2445
                                            actual_index = (
2446 2447
                                                index
                                                - len(output_attr[0].processes)
2448 2449
                                            ) % len(output_attr[0].processes)
                                        item = output_attr[0].processes[
2450 2451
                                            actual_index
                                        ]
2452 2453 2454 2455 2456
                                        if recv_rank == item:
                                            continue
                                        if self.rank_id == item:
                                            # if send bool data, cast then send
                                            self._handle_send(
2457 2458 2459 2460 2461 2462 2463
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2464 2465 2466
                                        if self.rank_id == recv_rank:
                                            # if recv bool data, recv then cast
                                            self._hadnle_recv(
2467 2468 2469 2470 2471 2472 2473
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2474 2475
                            else:
                                for index, tensor_process in enumerate(
2476 2477
                                    tensor_processes
                                ):
2478 2479 2480 2481 2482 2483 2484
                                    recv_rank = tensor_process
                                    item = output_attr[0].processes[index]
                                    if recv_rank == item:
                                        continue
                                    if self.rank_id == item:
                                        # if send bool data, cast then send
                                        self._handle_send(
2485 2486
                                            block, idx, var, op, item, recv_rank
                                        )
2487 2488 2489
                                    if self.rank_id == recv_rank:
                                        # if recv bool data, recv then cast
                                        self._hadnle_recv(
2490 2491
                                            block, idx, var, op, item, recv_rank
                                        )
2492 2493

                            cur_op_count = len(block.ops)
2494 2495 2496
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
                            pre_op_count = cur_op_count

                idx = idx + idx_offset + 1
            else:
                idx += 1

    def reshard(self):
        self._remove_global_process_mesh()
        for block_idx, block in enumerate(self.auto_parallel_main_prog.blocks):
            # change the var_name before resharding sub block
            if block_idx in Resharder.while_block_info:
                self._change_subblock_op_input_and_output(block_idx, block)

            # reshard input
            self._reshard_input(block)

            # reshard output
            # NOTE: Only support that insert send and recv op if output process mesh is different from tensor process mesh
            self._reshard_output(block)
2516 2517

        # remove no need vars and ops in the main program
2518 2519 2520 2521 2522 2523
        Remover.remove_no_need_in_main(
            self.auto_parallel_main_prog,
            self.dist_context,
            self.rank_id,
            self.dist_params_grads,
        )
2524

2525
        # remove no need vars and ops in the startip program
2526 2527 2528
        Remover.remove_no_need_in_startup(
            self.auto_parallel_main_prog, self.auto_parallel_startup_prog
        )
C
caozhou 已提交
2529

2530 2531
        # reset some variable when remove operation ended
        Resharder.while_block_info = {}
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

    def get_cost(self, op, tensor, cluster):
        # NOTE: The program should be the serial_program which is not been parted
        global _g_special_ops
        not_supported_op_type = _g_special_ops + ["while"]
        reshard_op_cost = None
        if op.type in not_supported_op_type:
            return reshard_op_cost
        else:
            tensor_name = tensor.name
            if tensor_name == "lod_tensor_blocking_queue_0":
                return reshard_op_cost
            else:
                dist_tensor = self.dist_context.get_dist_tensor_for_program(
2546 2547
                    tensor
                )
2548 2549 2550
                # simplified processing: ignore union process mesh and output reshard
                dist_op = self.dist_context.get_dist_op_for_program(op)
                dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
2551 2552
                    tensor.name
                )
2553 2554 2555
                process_mesh = dist_op.dist_attr.process_mesh
                dist_attr = [process_mesh, dims_mapping]
                if dist_tensor is not None and self.need_reshard(
2556 2557
                    dist_tensor, dist_attr
                ):
2558 2559 2560 2561 2562
                    if tensor_name not in self._has_resharded:
                        self._has_resharded[tensor_name] = [dist_op]
                    else:
                        for item in self._has_resharded[tensor_name]:
                            item_dist_attr = item.dist_attr
2563 2564 2565 2566 2567
                            item_dims_mapping = (
                                item_dist_attr.get_input_dims_mapping(
                                    tensor_name
                                )
                            )
2568
                            item_process_mesh = item_dist_attr.process_mesh
2569 2570 2571 2572
                            if (
                                dims_mapping == item_dims_mapping
                                and item_process_mesh == process_mesh
                            ):
2573 2574 2575
                                return reshard_op_cost
                        self._has_resharded[tensor_name].append(dist_op)

2576 2577 2578
                    reshard_op_desc = self.find_op_desc_seq(
                        dist_tensor, dist_attr, serial=True
                    )
2579 2580
                    dtype = dist_tensor.serial_tensor.dtype
                    reshard_op_cost = self.parse_op_desc_for_cost(
2581 2582
                        reshard_op_desc, dtype, cluster
                    )
2583 2584 2585

        return reshard_op_cost

2586 2587 2588 2589 2590 2591 2592 2593 2594
    def _concat_partitions_for_cost(
        self,
        partition_tensor_list,
        partition_index,
        dtype,
        rank_id,
        local_rank_comp_cost,
        cluster,
    ):
2595 2596 2597 2598 2599 2600
        if not partition_tensor_list:
            partition_tensor_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
2601 2602 2603 2604 2605 2606 2607
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i], partition_index
                )
2608 2609 2610 2611 2612 2613 2614
                if concat_axis != -1:
                    has_concat = True
                    concat_desc = {}
                    concat_desc["op"] = "concat"
                    concat_desc["attrs"] = {"axis": concat_axis}
                    if first_order == 0:
                        concat_desc["inputs"] = {
2615 2616 2617 2618
                            "X": [
                                (dtype, partition_tensor_list[i]),
                                (dtype, partition_index),
                            ]
2619 2620 2621
                        }
                    else:
                        concat_desc["inputs"] = {
2622 2623 2624 2625
                            "X": [
                                (dtype, partition_index),
                                (dtype, partition_tensor_list[i]),
                            ]
2626 2627 2628 2629 2630
                        }
                    partition_tensor_list.pop(i)
                    if rank_id not in local_rank_comp_cost:
                        local_rank_comp_cost[rank_id] = []
                    local_rank_comp_cost[rank_id].append(
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
                        ConcatOpCost(op_desc=concat_desc, cluster=cluster)
                    )
                    self._concat_partitions_for_cost(
                        partition_tensor_list,
                        new_partition,
                        dtype,
                        rank_id,
                        local_rank_comp_cost,
                        cluster,
                    )
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append(partition_index)

    def parse_op_desc_for_cost(self, reshard_op_desc, dtype, cluster):
        def _get_idx(comm_ranks, group_ranks):
            res, is_the_same = None, False
            idx = 0
            while idx < len(comm_ranks):
                if comm_ranks[idx] == set(group_ranks):
                    is_the_same = True

                for rank in group_ranks:
                    if rank in comm_ranks[idx]:
                        res = idx
                        comm_ranks[idx].add(rank)
                if res is None:
                    idx += 1
                else:
                    break
            return res, is_the_same

        comm_context = CommContext(cluster)
        # run communication op before computation op
        # TODO: Communication cost is not calculated when the var has been transfered by the same group in the past
        comm_costs = []
        comm_ranks = []
        local_rank_comp_cost = {}
        for key in reshard_op_desc:
            partition_tensor_list = []
            op_desc_list = reshard_op_desc[key]
            for op_desc in op_desc_list:
                if isinstance(op_desc, SendOpDesc):
                    group_ranks = [key, op_desc.dst]
                    shape = op_desc.shape
2677 2678 2679
                    send_desc = build_comm_desc(
                        "send_v2", group_ranks, dtype, shape
                    )
2680 2681
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2693 2694 2695 2696
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2697 2698 2699 2700 2701 2702 2703 2704
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2705 2706 2707 2708
                elif isinstance(op_desc, AllGatherOpDesc):
                    # NOTE: fill_const and other unnecessary op is not calculated because those cost is very small
                    group_ranks = op_desc.group
                    shape = op_desc.shape
2709 2710 2711
                    allgather_desc = build_comm_desc(
                        "c_allgather", group_ranks, dtype, shape
                    )
2712 2713 2714 2715 2716 2717 2718 2719
                    split_inputs_shape = []
                    for idx, dim in enumerate(shape):
                        if idx == 0:
                            split_inputs_shape.append(dim * len(group_ranks))
                        else:
                            split_inputs_shape.append(dim)
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2731 2732 2733 2734
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2735 2736 2737 2738 2739 2740 2741 2742
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
                    # calc the split op cost
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
                    split_desc = {}
                    split_desc["op"] = "split"
                    split_desc["inputs"] = {
                        "inputs": [(dtype, split_inputs_shape)]
                    }
                    split_desc["attrs"] = {"num": len(group_ranks), "axis": 0}
                    local_rank_comp_cost[key].append(
2753 2754
                        SplitOpCost(op_desc=split_desc, cluster=cluster)
                    )
2755 2756 2757 2758
                elif isinstance(op_desc, ConcatOpDesc):
                    partition_index_list = op_desc._partition_index_list
                    for idx, partion_idex in enumerate(partition_index_list):
                        self._concat_partitions_for_cost(
2759 2760 2761 2762 2763 2764 2765
                            partition_tensor_list,
                            partion_idex,
                            dtype,
                            key,
                            local_rank_comp_cost,
                            cluster,
                        )
2766 2767 2768 2769

                elif isinstance(op_desc, SliceOpDesc):
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
2770 2771 2772 2773
                    assert (
                        len(partition_tensor_list) == 1
                        or not partition_tensor_list
                    )
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
                    to_slice_tensor_shape = []
                    if len(partition_tensor_list) == 1:
                        for item in partition_tensor_list[0]:
                            to_slice_tensor_shape.append(item[1] - item[0])
                    else:
                        to_slice_tensor_shape = op_desc.shape
                    slice_desc = {}
                    slice_desc["op"] = "slice"
                    infer_flags = list(1 for i in range(len(op_desc.axes)))
                    slice_desc["attrs"] = {
                        "axes": op_desc.axes,
                        "starts": op_desc.starts,
                        "ends": op_desc.ends,
2787
                        "infer_flags": infer_flags,
2788 2789 2790 2791 2792
                    }
                    slice_desc["inputs"] = {
                        "Input": [(dtype, to_slice_tensor_shape)]
                    }
                    local_rank_comp_cost[key].append(
2793 2794
                        SliceOpCost(op_desc=slice_desc, cluster=cluster)
                    )
2795 2796 2797 2798

        res = (comm_costs, local_rank_comp_cost)

        return res