reshard.py 117.2 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from functools import reduce

import paddle
import paddle.fluid.layers.utils as utils
19
from paddle.distributed.fleet.meta_optimizers.common import OpRole
20
from paddle.framework import LayerHelper, OpProtoHolder, Program, core
21 22 23 24 25 26 27 28 29 30 31
from paddle.utils import unique_name

from .cost import (
    AllgatherOpCost,
    CommContext,
    ConcatOpCost,
    SendOpCost,
    SliceOpCost,
    SplitOpCost,
    build_comm_desc,
)
32
from .dist_attribute import TensorDistAttr
33
from .dist_context import DistributedContext
34 35
from .process_group import new_process_group
from .utils import is_gradient_clip_op
C
caozhou 已提交
36

37
# NOTE: If op in _g_special_ops or _g_gradient_clip_ops, it will not be resharded.
38
_g_special_ops = ['check_finite_and_unscale', 'update_loss_scaling']
39
_g_gradient_clip_ops = [
40 41 42 43 44
    "sum",
    "sqrt",
    "fill_constant",
    "elementwise_max",
    "elementwise_div",
45
]
46
_g_subblock_ops = ["while", "conditional_block"]
47 48 49 50 51 52 53 54


def get_var_with_recursion(var_name, block, program):
    """Get var in the parent block if not found in the current block"""
    var = None
    if var_name in block.vars:
        var = block.vars[var_name]
    else:
55 56 57 58 59
        var = block._var_recursive(var_name)
        # parent_block = program.blocks[block.parent_idx]
        # if var_name in parent_block.vars:
        #     var = parent_block.vars[var_name]
    assert var is not None, "{} is not found".format(var.name)
60

61
    return var
62

C
caozhou 已提交
63 64 65 66 67 68 69

class AllGatherOpDesc:
    """
    Describe the allgather op in the reshard phase.

    Args:
        group (list): Process group.
70 71
        shape (list): The tensor shape.
        is_bool (bool): Whether allgather bool data. Default: False.
C
caozhou 已提交
72 73
    """

74
    def __init__(self, group, shape, is_bool=False):
C
caozhou 已提交
75 76
        self._group = group
        self._desc = "all_gather"
77 78 79 80 81 82
        self._shape = shape
        self._is_bool = is_bool

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
83 84 85 86 87 88 89 90 91

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

92 93 94 95
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
96
    def __repr__(self):
97
        return f"op: {self._desc}, group: {self._group}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
98 99


100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
class AllGatherConcatOpDesc:
    """
    Describe the c_concat op in the reshard phase.

    Args:
        group (list): Process group.
        shape (list): The tensor shape.
        is_bool (bool): Whether c_concat bool data. Default: False.
    """

    def __init__(self, group, shape, is_bool=False):
        self._group = group
        self._desc = "c_concat"
        self._shape = shape
        self._is_bool = is_bool

    @property
    def is_bool(self):
        return self._is_bool

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

    @property
    def shape(self):
        return self._shape

    def __repr__(self):
        return f"op: {self._desc}, group: {self._group}, shape: {self._shape}, is_bool: {self._is_bool}."


C
caozhou 已提交
136 137 138 139 140 141
class SendOpDesc:
    """
    Describe the send op in the reshard phase.

    Args:
        partition_index (list): The index of partition in complete tensor.
142
        src (int): The source process to send.
C
caozhou 已提交
143
        dst (int): The destination process to receive.
144
        is_bool (bool): Whether send bool data. Default: False.
C
caozhou 已提交
145 146
    """

147
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
148 149 150
        self._dst = dst
        self._partition_index = partition_index
        self._desc = "send"
151 152 153 154 155 156 157 158 159 160 161
        self._shape = []
        self._is_bool = is_bool
        self._src = src

    @property
    def src(self):
        return self._src

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def dst(self):
        return self._dst

    @property
    def desc(self):
        return self._desc

175 176 177 178 179 180 181
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
182
    def __repr__(self):
183
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
184 185 186 187 188 189 190 191 192


class RecvOpDesc:
    """
    Describe the recv op in the reshard op.

    Args:
        partition_index (list): The index of partition in complete tensor.
        src (int): The source process to send.
193 194
        dst (int): The destination process to receive.
        is_bool (bool): Whether receive bool data. Default: False.
C
caozhou 已提交
195 196
    """

197
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
198 199 200
        self._src = src
        self._partition_index = partition_index
        self._desc = "recv"
201 202 203 204 205 206 207 208 209 210 211
        self._shape = []
        self._is_bool = is_bool
        self._dst = dst

    @property
    def dst(self):
        return self._dst

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def src(self):
        return self._src

    @property
    def desc(self):
        return self._desc

225 226 227 228 229 230 231
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
232
    def __repr__(self):
233
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
234 235 236 237 238 239 240


class SliceOpDesc:
    """
    Describe the slice op in the reshard phase.

    Args:
241 242 243 244
        starts (list): It represents start indices of corresponding axis in ``axes``.
        ends (list):  It represents end indices of corresponding axis in ``axes``.
        axes (list):  Axes that `starts` and `ends` apply to.
        shape (list): The shape of the tensor to be sliced.
C
caozhou 已提交
245 246
    """

247
    def __init__(self, starts, ends, axes, shape=None):
C
caozhou 已提交
248 249 250 251
        self._starts = starts
        self._ends = ends
        self._axes = axes
        self._desc = "slice"
252
        self._shape = shape
C
caozhou 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

    @property
    def starts(self):
        return self._starts

    @property
    def ends(self):
        return self._ends

    @property
    def axes(self):
        return self._axes

    @property
    def desc(self):
        return self._desc

270 271 272 273
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
274
    def __repr__(self):
275 276 277 278
        if self._shape is not None:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}, shape: {self._shape}."
        else:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}."
C
caozhou 已提交
279 280 281 282 283 284 285


class ConcatOpDesc:
    """
    Describe the concat op in the reshard phase.

    Args:
286
        partition_index_list (list): The list contains all partition index.
C
caozhou 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    """

    def __init__(self, partition_index_list):
        self._partition_index_list = partition_index_list
        self._desc = "concat"

    @property
    def partition_index_list(self):
        return self._partition_index_list

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index_list: {self._partition_index_list}."


305 306
class Inserter:
    """Insert op required in the reshard process."""
C
caozhou 已提交
307

308
    @staticmethod
309 310
    def insert_cast_op(block, idx, tensor, op_role, tensor_type):
        # to avoid name conflict with framework
311
        new_var_name = paddle.utils.unique_name.generate_with_ignorable_key(
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
            ".".join(["cast@RESHARD", 'tmp'])
        )
        out = block.create_var(
            name=new_var_name,
            dtype=tensor_type,
            type=tensor.type,
            lod_level=tensor.lod_level,
        )
        cast_op = block._insert_op(
            idx,
            type='cast',
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
                'in_dtype': tensor.dtype,
                'out_dtype': out.dtype,
                'op_role': op_role,
            },
        )
331
        cast_op._set_attr('op_namescope', "/auto_parallel/reshard")
332 333 334 335
        return out

    @staticmethod
    def insert_send_op(block, idx, tensor, src, dst, op_role):
336 337
        """Insert send op into block at the given index."""
        op_type = 'send_v2'
338 339
        # use pair comm group
        process_group = new_process_group([src, dst])
340 341 342 343 344 345 346 347 348 349 350 351
        send_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(dst),
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': True,
            },
        )
352
        send_op._set_attr('op_namescope', "/auto_parallel/reshard")
353 354

    @staticmethod
355
    def insert_recv_op(block, idx, tensor, src, dst, op_role):
356 357
        """Insert recv op into block at the given index."""
        op_type = 'recv_v2'
358 359
        # use pair group
        process_group = new_process_group([src, dst])
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
        recv_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(src),
                'out_shape': tensor.shape,
                'dtype': tensor.dtype,
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': True,
            },
        )
375
        recv_op._set_attr('op_namescope', "/auto_parallel/reshard")
376

377 378 379 380
    @staticmethod
    def insert_reset_lod_op(block, idx, X, Y, op_role):
        """Insert reset_lod op into block at the given index."""

381
        new_var_name = paddle.utils.unique_name.generate_with_ignorable_key(
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
            ".".join(["reset_lod@RESHARD", 'tmp'])
        )
        reset_lod_out = block.create_var(
            name=new_var_name,
            shape=X.shape,
            type=X.type,
            dtype=X.dtype,
            lod_level=X.lod_level,
        )

        reset_op = block._insert_op(
            idx,
            type="lod_reset",
            inputs={'X': X, 'Y': Y},
            outputs={'Out': reset_lod_out},
            attrs={'op_role': op_role},
        )
399
        reset_op._set_attr('op_namescope', "/auto_parallel/reshard")
400 401
        return reset_lod_out

402 403 404 405 406 407 408
    @staticmethod
    def insert_concat_op(block, idx, tensors, axis, op_role):
        """Insert concat op into block at the given block."""
        inputs = {'X': tensors}
        attrs = {}
        attrs['axis'] = axis
        attrs['op_role'] = op_role
409 410
        # to avoid name conflict with framework
        helper = LayerHelper('concat@RESHARD', **locals())
411
        with paddle.static.program_guard(block.program):
412
            out = block.create_var(
413
                name=paddle.utils.unique_name.generate_with_ignorable_key(
414 415
                    ".".join([helper.name, 'tmp'])
                ),
416 417 418 419 420
                dtype=tensors[0].dtype,
                shape=None,
                lod_level=tensors[0].lod_level,
                type=tensors[0].type,
                persistable=False,
421 422 423 424 425 426 427 428 429
                stop_gradient=False,
            )
        concat_op = block._insert_op(
            idx,
            type='concat',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
430
        concat_op._set_attr('op_namescope', "/auto_parallel/reshard")
431
        return out
C
caozhou 已提交
432

433
    @staticmethod
434 435 436
    def insert_slice_op(
        block, idx, tensor, starts, ends, axes, new_var_name, op_role
    ):
437
        """Insert slice op into block at the given block."""
438 439 440 441 442 443 444 445 446 447 448 449 450
        # This is a hack to insert split op to get slice tensor
        # 1. [128, 128] => [64, 128]: split
        # 2. [128, 128] => [128, 128]: assign
        # 3. [128, 128] => [64, 64]: slice, it will replaced by multi split
        global_shape = tensor.shape
        slice_shape = [ends[i] - starts[i] for i in range(len(starts))]
        diff_dims = []
        for index, item in enumerate(slice_shape):
            if item != global_shape[index]:
                diff_dims.append(index)

        # use assign
        if len(diff_dims) == 0:
451 452 453 454 455 456 457
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                shape=slice_shape,
                lod_level=tensor.lod_level,
            )
458 459 460
            inputs = {'X': [tensor]}
            outputs = {"Out": [out]}
            attrs = {"in_place": False}
461 462 463
            slice_op = block._insert_op(
                idx, type="assign", inputs=inputs, outputs=outputs, attrs=attrs
            )
464
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
            return out

        # use split once
        elif len(diff_dims) == 1:
            diff_dim = diff_dims[0]
            num_or_sections = global_shape[diff_dim] // slice_shape[diff_dim]
            axis = diff_dim
            cur_idx = starts[diff_dim] // slice_shape[diff_dim]
            input_shape = global_shape
            inputs = {'X': tensor}
            attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
            new_shape = []
            for index, item in enumerate(tensor.shape):
                if index != axis:
                    new_shape.append(item)
                else:
                    new_shape.append(item // num_or_sections)
            with paddle.static.program_guard(block.program):
                outs = [
484
                    block.create_var(
485
                        name=paddle.utils.unique_name.generate_with_ignorable_key(
486 487 488 489 490 491 492 493 494
                            ".".join(['split@RESHARD', 'tmp'])
                        ),
                        dtype=tensor.dtype,
                        shape=None,
                        type=tensor.type,
                        persistable=False,
                        lod_level=tensor.lod_level,
                        stop_gradient=False,
                    )
495 496 497
                    for i in range(num_or_sections)
                ]
                out = outs[cur_idx]
498 499 500 501 502 503 504
            split_op = block._insert_op(
                idx,
                type="split",
                inputs=inputs,
                outputs={'Out': outs},
                attrs=attrs,
            )
505
            split_op._set_attr('op_namescope', "/auto_parallel/reshard")
506 507 508 509 510 511 512 513 514 515 516
            return out

        # use slice
        else:
            inputs = {'Input': tensor}
            infer_flags = list(1 for i in range(len(axes)))
            attrs = {
                "axes": axes,
                "starts": starts,
                "ends": ends,
                "infer_flags": infer_flags,
517
                'op_role': op_role,
518
            }
519 520 521 522 523 524 525 526 527 528 529 530 531
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                lod_level=tensor.lod_level,
            )
            slice_op = block._insert_op(
                idx,
                type="slice",
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
532
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
533
            return out
C
caozhou 已提交
534

535
    @staticmethod
536
    def insert_split_op(block, idx, tensor, num_or_sections, op_role, axis=0):
537
        """Insert split op into block at the given index."""
538
        helper = LayerHelper('split@RESHARD', **locals())
539 540
        input_shape = tensor.shape
        inputs = {'X': tensor}
541 542 543 544 545 546 547
        attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
        new_shape = []
        for index, item in enumerate(tensor.shape):
            if index != axis:
                new_shape.append(item)
            else:
                new_shape.append(item // num_or_sections)
548 549
        with paddle.static.program_guard(block.program):
            outs = [
550
                block.create_var(
551
                    name=paddle.utils.unique_name.generate_with_ignorable_key(
552 553
                        ".".join([helper.name, 'tmp'])
                    ),
554 555 556 557 558
                    dtype=tensor.dtype,
                    shape=None,
                    lod_level=tensor.lod_level,
                    type=tensor.type,
                    persistable=False,
559 560 561
                    stop_gradient=False,
                )
                for i in range(num_or_sections)
562
            ]
563 564 565
        split_op = block._insert_op(
            idx, type="split", inputs=inputs, outputs={'Out': outs}, attrs=attrs
        )
566
        split_op._set_attr('op_namescope', "/auto_parallel/reshard")
567
        return outs
C
caozhou 已提交
568

569 570
    @staticmethod
    def insert_fill_constant_op(block, idx, op_role):
C
caozhou 已提交
571
        """Insert fill constant op into block at the given index."""
572 573 574
        # to avoid name conflict with framework
        helper = LayerHelper('fill_constant@RESHARD', **locals())
        # use paddle.int64 as dtype
C
caozhou 已提交
575
        with paddle.static.program_guard(block.program):
576
            out = block.create_var(
577
                name=paddle.utils.unique_name.generate_with_ignorable_key(
578 579
                    ".".join([helper.name, 'tmp'])
                ),
580 581 582 583
                dtype=paddle.int64,
                shape=None,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
584 585
                stop_gradient=False,
            )
C
caozhou 已提交
586 587 588 589 590
        inputs = {}
        attrs = {'force_cpu': False}
        attrs['str_value'] = str(int("1"))
        attrs['value'] = int("1")
        attrs['dtype'] = out.dtype
591
        attrs['op_role'] = op_role
592 593 594 595 596 597 598 599 600 601
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=[0], op_type='fill_constant'
        )
        fillconstant_op = block._insert_op(
            idx,
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
C
caozhou 已提交
602
        out.stop_gradient = True
603
        fillconstant_op._set_attr('op_namescope', "/auto_parallel/reshard")
C
caozhou 已提交
604 605
        return out

606 607 608 609 610 611 612 613 614 615
    @staticmethod
    def insert_allgather_op(block, idx, tensor, ranks, op_role):
        """Insert allgather op into block at the given index."""
        tensor_list = []
        group = new_process_group(ranks)
        idx_offset = 0

        # instant process group before insert allgather op.
        if not group.is_instantiate():
            # insert fill_constant op
616
            fill_constant_out = Inserter.insert_fill_constant_op(
617 618
                block, idx, op_role
            )
619 620 621
            fill_constant_out.stop_gradient = True

            # insert c_allreduce_sum op
622 623 624 625 626 627 628 629
            allreduce_op = block._insert_op(
                idx + 1,
                type="c_allreduce_sum",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
                attrs={
                    'ring_id': 0,
                    'use_calc_stream': True,
630 631 632
                    'op_role': op_role,
                },
            )
633
            allreduce_op._set_attr('op_namescope', "/auto_parallel/reshard")
634
            # insert c_sync_calc_stream op
635 636 637 638 639
            sync_calc_op = block._insert_op(
                idx + 2,
                type="c_sync_calc_stream",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
640 641
                attrs={'op_role': op_role},
            )
642
            sync_calc_op._set_attr('op_namescope', "/auto_parallel/reshard")
643 644 645 646
            idx_offset = 3

        # insert c_allgather op
        op_type = 'c_allgather'
647 648
        # to avoid name conflict with framework
        helper = LayerHelper(op_type + "@RESHARD", **locals())
649
        with paddle.static.program_guard(block.program):
650
            allgather_out = block.create_var(
651
                name=paddle.utils.unique_name.generate_with_ignorable_key(
652 653
                    ".".join([helper.name, 'tmp'])
                ),
654 655 656 657 658
                dtype=tensor.dtype,
                shape=None,
                lod_level=tensor.lod_level,
                type=tensor.type,
                persistable=False,
659 660 661 662 663 664 665 666 667 668 669 670 671 672
                stop_gradient=False,
            )
        allgather_op = block._insert_op(
            idx + idx_offset,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [allgather_out]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'nranks': group.nranks,
                'op_role': op_role,
            },
        )
673
        allgather_op._set_attr('op_namescope', "/auto_parallel/reshard")
674 675 676
        idx_offset += 1

        # insert split op
677 678 679
        split_out = Inserter.insert_split_op(
            block, idx + idx_offset, allgather_out, group.nranks, op_role
        )
680 681 682 683
        idx_offset += 1
        tensor_list.extend(split_out)
        return tensor_list, idx_offset

684 685 686 687 688 689 690 691 692 693 694 695
    @staticmethod
    def insert_c_concat_op(block, idx, tensor, ranks, op_role):
        """Insert c_concat op into block at the given index."""
        group = new_process_group(ranks)
        idx_offset = 0

        # insert c_concat op
        op_type = 'c_concat'
        # to avoid name conflict with framework
        helper = LayerHelper(op_type + "@RESHARD", **locals())
        with paddle.static.program_guard(block.program):
            c_concat_out = block.create_var(
696
                name=paddle.utils.unique_name.generate_with_ignorable_key(
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
                    ".".join([helper.name, 'tmp'])
                ),
                dtype=tensor.dtype,
                shape=None,
                lod_level=tensor.lod_level,
                type=tensor.type,
                persistable=False,
                stop_gradient=False,
            )
        cur_rank = paddle.distributed.get_rank()
        c_concat_op = block._insert_op(
            idx + idx_offset,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [c_concat_out]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                'nranks': group.nranks,
                'op_role': op_role,
                'rank': group.ranks.index(cur_rank) if cur_rank in ranks else 0,
            },
        )
        c_concat_op._set_attr('op_namescope', "/auto_parallel/reshard")
        return c_concat_out

724
    @staticmethod
725 726 727
    def concat_partitions_with_op(
        partition_tensor_list, tensor, partition_index, block, idx, op_role
    ):
728 729
        """Concat the tensors and insert concat op."""
        if not partition_tensor_list:
C
caozhou 已提交
730
            partition_tensor_list.append((tensor, partition_index))
731 732 733 734
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
735 736 737 738 739 740 741
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i][1], partition_index
                )
742 743
                if concat_axis != -1:
                    has_concat = True
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
                    _ = (
                        Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [partition_tensor_list[i][0], tensor],
                            concat_axis,
                            op_role,
                        )
                        if first_order == 0
                        else Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [tensor, partition_tensor_list[i][0]],
                            concat_axis,
                            op_role,
                        )
                    )
761 762
                    partition_tensor_list.pop(i)
                    idx[0] += 1
763 764 765 766 767 768 769 770
                    Inserter.concat_partitions_with_op(
                        partition_tensor_list,
                        _,
                        new_partition,
                        block,
                        idx,
                        op_role,
                    )
771 772 773 774 775 776 777 778 779 780 781 782 783
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append((tensor, partition_index))


class Remover:
    """Remove var and op in the reshard process."""

    @staticmethod
    def remove_no_need_ops(auto_parallel_main_prog, dist_context, rank_id):
        """Remove no need ops in the main program"""
        not_remove_op_ref = [
784 785 786
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
787
        ]
C
caozhou 已提交
788

789 790 791 792
        # NOTE: The nested sub block is not be supported now.
        remove_block_order = []
        for block_idx in Resharder.while_block_info:
            remove_block_order.append(block_idx)
C
caozhou 已提交
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            if block_idx not in remove_block_order:
                remove_block_order.append(block_idx)

        # the sub block should be removed first
        for block_idx in remove_block_order:
            remove_op_idx = []
            block = auto_parallel_main_prog.blocks[block_idx]
            ops = block.ops
            vars = block.vars
            for idx, op in enumerate(ops):
                if op.type == "read":
                    dim_list = []
                    for var_name in op.output_arg_names:
                        dim_list.extend(
                            get_var_with_recursion(
810 811 812
                                var_name, block, auto_parallel_main_prog
                            ).shape
                        )
813 814 815 816 817
                    for i in range(idx, -1, -1):
                        if ops[i].type == "create_py_reader":
                            ops[i]._set_attr("shape_concat", dim_list)
                            break
                    continue
818

819 820 821 822
                # replace the input and output of c_sync_comm_stream op when in pipeline scene.
                if op.type == "c_sync_comm_stream":
                    need_save = []
                    for var_name in op.input_arg_names:
823 824 825 826 827 828 829
                        process_mesh = (
                            dist_context.get_tensor_dist_attr_for_program(
                                get_var_with_recursion(
                                    var_name, block, auto_parallel_main_prog
                                )
                            ).process_mesh
                        )
830
                        if rank_id in process_mesh.process_ids:
831 832 833 834
                            need_save.append(var_name)
                    if not need_save:
                        remove_op_idx.append(idx)
                        continue
835

836 837 838 839
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, need_save)
                    op.desc.set_output(proto.outputs[0].name, need_save)
                    continue
840

841 842 843 844
                # judge the other op whether should be removed.
                op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
                if op_dist_attr is not None:
                    op_process_mesh = op_dist_attr.process_mesh
845
                    if (
846
                        rank_id not in op_process_mesh.process_ids
847 848
                        and op.type not in not_remove_op_ref
                    ):
849 850 851 852 853 854
                        remove_op_idx.append(idx)

            for idx in remove_op_idx[::-1]:
                block._remove_op(idx)

    @staticmethod
855 856 857
    def remove_no_need_vars(
        auto_parallel_main_prog, dist_params_grads, feed_var_names
    ):
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
        """Remove no need vars in the main program"""
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            remove_vars = set()
            ops = block.ops
            vars = block.vars
            need_vars = set()
            for op in ops:
                for var_name in op.input_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
                for var_name in op.output_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
            for var in vars:
                if var not in need_vars:
                    remove_vars.add(var)

            # change dist_params_grads, the optimize op just in block 0.
            if block_idx == 0:
                param_grad_map = {}
                for op in ops:
                    if int(op.attr('op_role')) == int(OpRole.Optimize):
880 881 882 883
                        if (
                            "Param" in op.input_names
                            and "Grad" in op.input_names
                        ):
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
                            param_name = op.input("Param")[0]
                            grad_name = op.input("Grad")[0]
                            param_grad_map[param_name] = grad_name

                need_remove_idx = []
                for idx, item in enumerate(dist_params_grads):
                    if item[0].name not in param_grad_map.keys():
                        need_remove_idx.append(idx)

                for idx in need_remove_idx[::-1]:
                    dist_params_grads.pop(idx)

                idx = 0
                while idx < len(dist_params_grads):
                    param_name = dist_params_grads[idx][0].name
                    grad_name = dist_params_grads[idx][1].name
                    if grad_name != param_grad_map[param_name]:
                        dist_params_grads[idx] = (
902 903 904
                            vars[param_name],
                            vars[param_grad_map[param_name]],
                        )
905 906 907
                    idx += 1

            for var in remove_vars:
908
                if var in feed_var_names:
909
                    continue
910 911 912
                block._remove_var(var)

    @staticmethod
913 914 915
    def remove_no_need_in_main(
        auto_parallel_main_prog, dist_context, rank_id, dist_params_grads
    ):
916
        """Remove no need vars and ops in the main program."""
917 918 919 920 921 922
        Remover.remove_no_need_ops(
            auto_parallel_main_prog, dist_context, rank_id
        )
        Resharder.change_while_op_input_and_output(
            auto_parallel_main_prog, dist_context
        )
923 924 925 926
        # 'feed_var_names' cannot be removed from auto_parallel_main_prog
        feed_var_names = []
        for var in sum(list(dist_context.serial_feed_vars.values()), []):
            feed_var_names.append(var.name)
927 928 929
        Remover.remove_no_need_vars(
            auto_parallel_main_prog, dist_params_grads, feed_var_names
        )
930 931

    @staticmethod
932 933 934
    def remove_no_need_in_startup(
        auto_parallel_main_prog, auto_parallel_startup_prog
    ):
935 936 937 938 939 940
        """Remove no need vars and ops in the startup program."""
        main_input_vars = set()
        main_ops = auto_parallel_main_prog.global_block().ops
        for op in main_ops:
            for var_name in op.input_arg_names:
                main_input_vars.add(var_name)
941

942 943 944 945 946 947 948 949 950
        startup_block = auto_parallel_startup_prog.global_block()
        startup_output_vars = set()
        startup_ops = startup_block.ops
        for op in startup_ops:
            # skip c_sync_comm_stream op
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                startup_output_vars.add(var_name)
951

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
        need_vars = set()
        for var_name in startup_output_vars:
            if var_name in main_input_vars:
                need_vars.add(var_name)

        startup_ops = startup_block.ops
        actual_need_vars = set()
        for idx, op in enumerate(startup_ops):
            is_need_op = False
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                if var_name in need_vars:
                    is_need_op = True
                    break
            if is_need_op:
                for var_name in op.output_arg_names:
                    actual_need_vars.add(var_name)
                for var_name in op.input_arg_names:
                    actual_need_vars.add(var_name)
972

973 974 975 976 977 978
        remove_vars = set()
        for var_name in startup_block.vars:
            if var_name not in actual_need_vars:
                remove_vars.add(var_name)
        for var in remove_vars:
            startup_block._remove_var(var)
979 980

        remove_op_idx = []
981 982 983
        vars = startup_block.vars
        for idx, op in enumerate(startup_block.ops):
            is_no_need_op = False
984
            if op.type == "c_sync_comm_stream":
985
                var_names = []
986
                for var_name in op.input_arg_names:
987 988 989
                    if var_name in vars:
                        var_names.append(var_name)
                if not var_names:
990
                    remove_op_idx.append(idx)
991 992 993 994
                else:
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, var_names)
                    op.desc.set_output(proto.outputs[0].name, var_names)
995
                continue
C
caozhou 已提交
996

997 998 999 1000 1001 1002
            for var_name in op.output_arg_names:
                if var_name not in vars:
                    is_no_need_op = True
                    break
            if is_no_need_op:
                remove_op_idx.append(idx)
1003
        for idx in remove_op_idx[::-1]:
1004
            startup_block._remove_op(idx)
C
caozhou 已提交
1005 1006


1007 1008 1009
class Resharder:
    """
    Reshard tensor in the program according to its distributed attribute and corresponding op distributed attribute.
1010

1011 1012 1013 1014 1015 1016 1017 1018
    Args:
        auto_parallel_main_prog (Program): An auto parallel main program.
        auto_parallel_startup_prog (Program): An auto parallel startup program.
        rank_id (int): The process id.
        dist_context (DistributedContext): The distributed context of this rank.
        dist_params_grads (list): The list contains the tuple of param and grad.
        batch_size (int): The batch size. Default: None.
    """
1019

1020 1021
    while_block_info = {}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    def __init__(
        self,
        auto_parallel_main_prog,
        auto_parallel_startup_prog,
        rank_id,
        dist_context,
        dist_params_grads,
        batch_size=None,
    ):
        assert isinstance(auto_parallel_main_prog, Program), (
            "The type of auto_parallel_main_prog should be Program, "
            "but got {}.".format(type(auto_parallel_main_prog))
        )
1035
        if auto_parallel_startup_prog is not None:
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
            assert isinstance(auto_parallel_main_prog, Program), (
                "The type of auto_parallel_startup_prog should be Program or None, "
                "but got {}.".format(type(auto_parallel_startup_prog))
            )
        assert isinstance(
            rank_id, int
        ), "The type of rank_id should be int, " "but got {}.".format(
            type(rank_id)
        )
        assert isinstance(dist_context, DistributedContext), (
            "The type of dist_context should be DistributedContext, "
            "but got {}.".format(type(dist_context))
        )
1049

1050
        if batch_size is not None:
1051 1052 1053 1054 1055
            assert isinstance(
                batch_size, int
            ), "The type of batch_size should be int, " "but got {}.".format(
                type(batch_size)
            )
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

        self._auto_parallel_main_prog = auto_parallel_main_prog
        self._auto_parallel_startup_prog = auto_parallel_startup_prog
        self._rank_id = rank_id
        self._dist_context = dist_context
        self._dist_params_grads = dist_params_grads
        self._batch_size = batch_size
        self._has_sent = {}
        self._has_recv = {}
        self._has_allgather = {}
1066 1067
        # to avoid reshard repeatly
        self._has_resharded = {}
1068

1069 1070 1071
    @property
    def auto_parallel_main_prog(self):
        return self._auto_parallel_main_prog
1072

1073 1074 1075
    @property
    def auto_parallel_startup_prog(self):
        return self._auto_parallel_startup_prog
1076

1077 1078 1079
    @property
    def rank_id(self):
        return self._rank_id
1080

1081 1082 1083
    @property
    def dist_context(self):
        return self._dist_context
1084

1085 1086 1087
    @property
    def dist_params_grads(self):
        return self._dist_params_grads
1088

1089 1090 1091
    @property
    def batch_size(self):
        return self._batch_size
1092

1093 1094 1095
    @property
    def has_sent(self):
        return self._has_sent
1096

1097 1098 1099
    @property
    def has_recv(self):
        return self._has_recv
1100

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    @property
    def has_allgather(self):
        return self._has_allgather

    @staticmethod
    def compute_partition_shape(complete_shape, dims_mapping, process_shape):
        """Compute the shape of partition."""
        partition_shape = []
        for idx, item in enumerate(complete_shape):
            if dims_mapping[idx] == -1:
                partition_shape.append(item)
            else:
                partition_shape.append(item // process_shape[dims_mapping[idx]])
1114

1115
        return partition_shape
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    @staticmethod
    def compute_process_index(process, process_group, process_shape):
        """Compute the index of process_shape corresponding to the process."""
        relative_process = process_group.index(process)
        process_index = []
        product = reduce(lambda x, y: x * y, process_shape)

        for i in range(len(process_shape)):
            idx = relative_process // (product // process_shape[i])
            product = product // process_shape[i]
1127 1128 1129
            relative_process = (
                relative_process - relative_process // product * product
            )
1130 1131 1132 1133 1134
            process_index.append(idx)

        return process_index

    @staticmethod
1135 1136 1137
    def compute_partition_index(
        process, complete_shape, dims_mapping, process_shape, process_group
    ):
1138 1139
        """Compute the partition index in complete tensor."""
        partition_shape = Resharder.compute_partition_shape(
1140 1141 1142 1143 1144
            complete_shape, dims_mapping, process_shape
        )
        process_index = Resharder.compute_process_index(
            process, process_group, process_shape
        )
1145 1146 1147 1148 1149 1150
        partition_index = []

        for i in range(len(complete_shape)):
            if dims_mapping[i] == -1:
                partition_index.append([0, partition_shape[i]])
            else:
1151 1152 1153 1154 1155 1156 1157
                partition_index.append(
                    [
                        process_index[dims_mapping[i]] * partition_shape[i],
                        (process_index[dims_mapping[i]] + 1)
                        * partition_shape[i],
                    ]
                )
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

        return partition_index

    @staticmethod
    def compute_concat_info(partition_index_x, partition_index_y):
        """Judge whether two partition can be concatenated and compute concatenated partition index."""
        differ_count = 0
        concat_axis = -1
        first_order = 0
        new_partition = []

        for idx, item in enumerate(partition_index_x):
            if item != partition_index_y[idx]:
                differ_count += 1
1172 1173 1174 1175
                if (
                    item[1] == partition_index_y[idx][0]
                    and item[0] < partition_index_y[idx][1]
                ):
1176 1177
                    concat_axis = idx
                    new_partition.append([item[0], partition_index_y[idx][1]])
1178 1179 1180 1181
                elif (
                    item[0] == partition_index_y[idx][1]
                    and item[1] > partition_index_y[idx][0]
                ):
1182 1183 1184 1185 1186
                    first_order = 1
                    concat_axis = idx
                    new_partition.append([partition_index_y[idx][0], item[1]])
            else:
                new_partition.append(item)
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        if differ_count == 1:
            return concat_axis, first_order, new_partition
        else:
            return -1, first_order, new_partition

    @staticmethod
    def compute_complete_shape(slice_shape, process_shape, dims_mapping):
        """compute the complete shape of the slice tensor  with its process mesh and dims mapping"""
        complete_shape = []
        for idx, item in enumerate(slice_shape):
            if dims_mapping[idx] == -1:
                complete_shape.append(item)
            else:
                complete_shape.append(item * process_shape[dims_mapping[idx]])
        return complete_shape
C
caozhou 已提交
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    @staticmethod
    def concat_partitions(partition_index_list, partition_index):
        """Concat the given partitions without inserting concat op."""
        if not partition_index_list:
            partition_index_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_index_list):
                concat_axis, _, new_partition = Resharder.compute_concat_info(
1214 1215
                    partition_index_list[i], partition_index
                )
1216 1217 1218
                if concat_axis != -1:
                    has_concat = True
                    partition_index_list.pop(i)
1219 1220 1221
                    Resharder.concat_partitions(
                        partition_index_list, new_partition
                    )
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
                    break
                i += 1
            if not has_concat:
                partition_index_list.append(partition_index)

    @staticmethod
    def change_while_op_input_and_output(auto_parallel_main_prog, dist_context):
        """Change while op input and output after the corresponding sub block ops removed"""
        for sub_block_idx in Resharder.while_block_info:
            sub_block = auto_parallel_main_prog.blocks[sub_block_idx]
            parent_while_op_id = Resharder.while_block_info[sub_block_idx][
1233 1234
                "op_id"
            ]
1235 1236 1237 1238 1239 1240 1241
            parent_block = auto_parallel_main_prog.blocks[sub_block.parent_idx]

            sub_block_op_inputs = set()
            sub_block_op_outputs = []
            for op in sub_block.ops:
                # skip the input and output of operators inserted in the reshard phase
                dist_op = dist_context.get_dist_op_for_program(op)
1242 1243 1244 1245 1246 1247
                if (
                    dist_op
                    or (op.type == "slice" and not dist_op)
                    or (op.type == "split" and not dist_op)
                    or (op.type == "assign" and not dist_op)
                ):
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
                    for var_name in op.output_arg_names:
                        if var_name not in sub_block_op_outputs:
                            sub_block_op_outputs.append(var_name)
                    for var_name in op.input_arg_names:
                        sub_block_op_inputs.add(var_name)

            # find the while op
            while_op = None
            for op in parent_block.ops:
                if op.desc.id() == parent_while_op_id and op.type == "while":
                    while_op = op
                    break

1261 1262
            if while_op is None:
                continue
1263 1264 1265 1266 1267 1268 1269 1270

            # find the actual input and output of while op
            proto = OpProtoHolder.instance().get_op_proto(while_op.type)
            new_X = []
            for var_name in while_op.input("X"):
                if var_name in sub_block_op_inputs:
                    new_X.append(var_name)
            assert new_X
1271
            new_X.sort()
1272 1273 1274 1275 1276
            while_op.desc.set_input(proto.inputs[0].name, new_X)

            new_Out = []
            for var_name in while_op.output("Out"):
                for output_name in sub_block_op_outputs[::-1]:
1277
                    if output_name.find(var_name) != -1 and (
1278 1279 1280
                        len(var_name) == len(output_name)
                        or "@RESHARD" in output_name
                    ):
1281 1282
                        if output_name not in new_Out:
                            new_Out.append(output_name)
1283 1284 1285 1286 1287 1288
            assert new_Out
            while_op.desc.set_output(proto.outputs[0].name, new_Out)

    def is_overlapped(self, shape_x, shape_y):
        """Judge whether two partitions intersect on the specified dimension."""
        overlapped = False
1289 1290 1291
        if (shape_y[0] <= shape_x[0] < shape_y[1]) or (
            shape_x[0] <= shape_y[0] < shape_x[1]
        ):
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
            overlapped = True
        return overlapped

    def is_unshard(self, dims_mapping):
        for dim in dims_mapping:
            if dim != -1:
                return False
        return True

    def is_special_op(self, op):
1302
        global _g_special_ops, _g_gradient_clip_ops
Z
zhaoyingli 已提交
1303 1304
        if op.type in _g_special_ops:
            return True
1305
        if is_gradient_clip_op(op) and op.type in _g_gradient_clip_ops:
1306
            return True
Z
zhaoyingli 已提交
1307 1308
        return False

1309 1310
    def is_condition_replicative(self, op):
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
1311 1312 1313 1314 1315

        if op.type == "while":
            input_cond = op.input("Condition")
        elif op.type == "conditional_block":
            input_cond = op.input("Cond")
1316 1317

        # the dims mapping of condition tensor should be replicative
1318
        for var_name in input_cond:
1319 1320 1321
            var = get_var_with_recursion(
                var_name, sub_block, self.auto_parallel_main_prog
            )
1322 1323 1324 1325 1326 1327
            dist_tensor = self.dist_context.get_dist_tensor_for_program(var)
            tensor_dist_attr = dist_tensor.dist_attr
            var_dims_mapping = tensor_dist_attr.dims_mapping
            for dim in var_dims_mapping:
                if dim != -1:
                    return False
1328

1329 1330
        return True

1331
    def need_reshard(self, dist_tensor, dist_attr, op_input=True, dist_op=None):
1332 1333 1334 1335 1336
        """Judge the tensor whether needs to be resharded."""
        is_reshard = False
        tensor_dist_attr = dist_tensor.dist_attr
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        tensor_process_mesh = tensor_dist_attr.process_mesh
1337 1338 1339 1340

        # dist_attr is [process_mesh, dims_mapping] and process_mesh is not a union
        op_process_mesh = dist_attr[0]

1341
        if op_input:
1342
            op_input_dims_mapping = dist_attr[1]
1343
            if all(
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
                map(
                    lambda x: x,
                    [
                        tensor_dims_mapping,
                        tensor_process_mesh,
                        op_input_dims_mapping,
                        op_process_mesh,
                    ],
                )
            ):
1354
                # judge whether need reshard by dims_mapping
1355
                if tensor_dims_mapping != op_input_dims_mapping:
1356 1357 1358 1359
                    if (
                        tensor_process_mesh
                        not in self.dist_context.process_meshes
                    ):
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
                        # assert whether -1 when union.
                        for item in tensor_dims_mapping:
                            if item != -1:
                                raise ValueError(
                                    "The dim must be -1 when tensor process mesh is a union."
                                )
                        # tensor process_mesh: [0, 1, 2, 3], dims_mapping: [-1, -1]
                        # op process_mesh: [4, 5], dims_mapping: [0, -1]
                        # reshard is not supported such as above
                        if not is_reshard:
                            return is_reshard
1371
                        else:
1372 1373 1374 1375 1376 1377 1378 1379
                            raise ValueError(
                                "it is not supported that tensor process mesh is a union and needs reshard."
                            )
                    is_reshard = True

                # judge whether need reshard by process_mesh
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1380
        else:
1381
            op_output_dims_mapping = dist_attr[1]
1382
            if all(
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
                map(
                    lambda x: x,
                    [
                        tensor_dims_mapping,
                        tensor_process_mesh,
                        op_output_dims_mapping,
                        op_process_mesh,
                    ],
                )
            ):
1393 1394 1395 1396
                if tensor_dims_mapping != op_output_dims_mapping:
                    raise ValueError(
                        "It is not supported that tensor dims mapping is different from op output dims mapping."
                    )
1397 1398
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1399 1400 1401 1402

        return is_reshard

    def get_op_process_meshes(self, op):
1403
        """Get sub process meshes of the given op if op process mesh is a union."""
1404 1405 1406
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        op_process_mesh = dist_op.dist_attr.process_mesh
1407

1408
        for process_mesh in self.dist_context.process_meshes:
1409 1410 1411 1412 1413
            if set(process_mesh.process_ids) & (
                set(op_process_mesh.process_ids)
            ) and len(process_mesh.process_ids) < len(
                op_process_mesh.process_ids
            ):
1414 1415 1416 1417 1418 1419 1420 1421
                process_meshes.append(process_mesh)

        # it means the process mesh is not a union when process meshes is null
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        return process_meshes

1422
    def find_op_desc_seq(self, dist_tensor, dist_attr, serial=False):
1423 1424 1425 1426 1427
        """
        Find the op description sequence to reshard the source tensor for matching the op requirement.

        Args:
            dist_tensor (DistributedTensor): A distributed tensor.
1428 1429
            dist_attr (list): A list contains process_mesh and dims_mapping such as [process_mesh, dims_mapping].
            serial (bool): If serial is true, the dist tensor and dist op come from serial program. Otherwise, they come from auto program.
1430 1431 1432 1433 1434 1435 1436 1437

        Returns:
            Dict, the dict represents the required op description sequence corresponding to process, The key of dict is
            process and value is a list containing op description.
        """
        tensor_dist_attr = dist_tensor.dist_attr
        source_tensor = dist_tensor.serial_tensor
        tensor_name = source_tensor.name
1438

1439 1440
        source_dims_mapping = tensor_dist_attr.dims_mapping
        source_process_mesh = tensor_dist_attr.process_mesh
1441 1442
        source_process_group = source_process_mesh.process_ids
        source_process_shape = source_process_mesh.shape
1443

1444 1445
        target_process_mesh = dist_attr[0]
        target_dims_mapping = dist_attr[1]
1446 1447
        target_process_group = target_process_mesh.process_ids
        target_process_shape = target_process_mesh.shape
1448 1449

        if source_tensor.shape[0] < 0:
1450
            assert source_tensor.shape[0] == -1
1451 1452 1453 1454
            new_shape = list(source_tensor.shape)
            new_shape[0] = self.batch_size
            source_tensor.desc.set_shape(new_shape)

1455 1456 1457 1458 1459 1460 1461
        complete_shape = (
            Resharder.compute_complete_shape(
                source_tensor.shape, source_process_shape, source_dims_mapping
            )
            if not serial
            else source_tensor.shape
        )
1462 1463 1464
        op_desc_seq = {}

        # TODO: if the target process group has the same process with source process group
1465 1466 1467
        if set(target_process_group).intersection(
            set(source_process_group)
        ) and set(target_process_group).difference(set(source_process_group)):
1468 1469 1470 1471 1472
            pass

        elif target_process_group != source_process_group:
            partition_process_mapping_list = []
            for source_process in source_process_group:
1473
                # get partition index of source process
1474 1475 1476 1477 1478 1479 1480
                source_partition_index = Resharder.compute_partition_index(
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1481
                if not partition_process_mapping_list:
1482
                    # the item in partition_process_mapping_list is source_partition_index, which processes and whether has been used
1483
                    partition_process_mapping_list.append(
1484 1485
                        [source_partition_index, [source_process], [False]]
                    )
1486
                else:
1487
                    partition_list = list(
1488 1489
                        [item[0] for item in partition_process_mapping_list]
                    )
1490
                    process_list = list(
1491 1492
                        [item[1] for item in partition_process_mapping_list]
                    )
1493
                    has_used = list(
1494 1495
                        [item[2] for item in partition_process_mapping_list]
                    )
1496

1497 1498 1499 1500 1501
                    if partition_list.count(source_partition_index) == 1:
                        index = partition_list.index(source_partition_index)
                        process_list[index].append(source_process)
                        has_used[index].append(False)
                    else:
1502
                        partition_process_mapping_list.append(
1503 1504
                            [source_partition_index, [source_process], [False]]
                        )
1505 1506

            for target_process in target_process_group:
1507
                # has_sent means the source_partition_index has been sent to target_process
1508 1509
                has_sent = []
                target_partition_index = Resharder.compute_partition_index(
1510 1511 1512 1513 1514 1515
                    target_process,
                    complete_shape,
                    target_dims_mapping,
                    target_process_shape,
                    target_process_group,
                )
1516 1517 1518 1519
                partition_index_list = []
                all_partition_index_list = []
                for source_process in source_process_group:
                    source_partition_index = Resharder.compute_partition_index(
1520 1521 1522 1523 1524 1525
                        source_process,
                        complete_shape,
                        source_dims_mapping,
                        source_process_shape,
                        source_process_group,
                    )
1526
                    to_send_process = None
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
                    if (
                        all(
                            _
                            for _ in list(
                                map(
                                    self.is_overlapped,
                                    source_partition_index,
                                    target_partition_index,
                                )
                            )
                        )
                        and source_partition_index not in has_sent
                    ):
                        idx = list(
                            [item[0] for item in partition_process_mapping_list]
                        ).index(source_partition_index)
                        has_used = list(
                            [item[2] for item in partition_process_mapping_list]
                        )[idx]
                        process_list = list(
                            [item[1] for item in partition_process_mapping_list]
                        )[idx]
1549 1550 1551 1552 1553 1554 1555
                        i = 0
                        while i < len(has_used):
                            if not has_used[i]:
                                to_send_process = process_list[i]
                                has_used[i] = True
                                break
                            i += 1
1556

1557 1558 1559 1560
                        if i == len(has_used):
                            has_used = list(map(lambda x: False, has_used))
                            to_send_process = process_list[0]
                            has_used[0] = True
1561 1562 1563
                        assert (
                            to_send_process is not None
                        ), "Failed to find the send process."
1564 1565 1566 1567 1568 1569 1570 1571

                        if to_send_process not in op_desc_seq.keys():
                            op_desc_seq[to_send_process] = []
                        if target_process not in op_desc_seq.keys():
                            op_desc_seq[target_process] = []
                        all_partition_index_list.append(source_partition_index)

                        # append send and recv op desc
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
                        is_bool = dist_tensor.serial_tensor.dtype == paddle.bool
                        send_op_desc = SendOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
                        recv_op_desc = RecvOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
1585 1586 1587
                        op_desc_seq[to_send_process].append(send_op_desc)
                        op_desc_seq[target_process].append(recv_op_desc)
                        has_sent.append(source_partition_index)
1588 1589 1590
                        Resharder.concat_partitions(
                            partition_index_list, source_partition_index
                        )
1591 1592 1593

                # append concat op desc
                op_desc_seq[target_process].append(
1594 1595
                    ConcatOpDesc(all_partition_index_list)
                )
1596 1597 1598 1599 1600 1601

                # append slice op desc
                slice_starts = []
                slice_ends = []
                slices_axes = []
                concatenated_partition_index = partition_index_list[0]
1602 1603
                to_slice_tensor_shape = []

1604
                for idx, item in enumerate(concatenated_partition_index):
1605 1606 1607
                    slice_starts.append(
                        target_partition_index[idx][0] - item[0]
                    )
1608 1609
                    slice_ends.append(target_partition_index[idx][1] - item[0])
                    slices_axes.append(idx)
1610 1611
                    to_slice_tensor_shape.append(item[1] - item[0])

1612
                op_desc_seq[target_process].append(
1613 1614 1615 1616 1617 1618 1619
                    SliceOpDesc(
                        slice_starts,
                        slice_ends,
                        slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                )
1620

1621
        # In the same process group, it will use allgahther and slice op.
1622
        else:
1623
            # NOTE: It just supports even partition scene.
1624 1625 1626 1627 1628
            partition_index_list = []
            all_partition_index_list = []
            process_index = []
            for source_process in source_process_group:
                source_partition_index = Resharder.compute_partition_index(
1629 1630 1631 1632 1633 1634
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1635 1636
                if source_partition_index not in partition_index_list:
                    partition_index_list.append(source_partition_index)
1637 1638 1639 1640 1641 1642 1643 1644
                    process_index.append(
                        [
                            [
                                source_process,
                            ],
                            source_partition_index,
                        ]
                    )
1645
                else:
1646 1647 1648
                    process_index[
                        partition_index_list.index(source_partition_index)
                    ][0].append(source_process)
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

            for i in range(len(process_index[0][0])):
                group = []
                for j in range(len(process_index)):
                    group.append(process_index[j][0][i])
                    if i == 0:
                        all_partition_index_list.append(process_index[j][1])
                for process in group:
                    # append slice op desc
                    slice_starts = []
                    slice_ends = []
                    slices_axes = []
                    target_partition_index = Resharder.compute_partition_index(
1662 1663 1664 1665 1666 1667
                        process,
                        complete_shape,
                        target_dims_mapping,
                        target_process_shape,
                        target_process_group,
                    )
1668 1669 1670 1671 1672
                    for idx, item in enumerate(target_partition_index):
                        slice_starts.append(item[0])
                        slice_ends.append(item[1])
                        slices_axes.append(idx)

1673
                    to_slice_tensor_shape = dist_tensor.global_sizes()
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
                    slice_op_desc = SliceOpDesc(
                        starts=slice_starts,
                        ends=slice_ends,
                        axes=slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                    allgather_shape = (
                        None
                        if not serial
                        else dist_tensor.local_sizes(rank=process)
                    )
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
                    # c_concat pass
                    if (
                        target_dims_mapping.count(-1)
                        == len(target_dims_mapping)
                        and source_dims_mapping[:-1].count(-1)
                        == len(source_dims_mapping[:-1])
                        and source_dims_mapping[-1] != -1
                    ):
                        op_desc_seq[process] = [
                            AllGatherConcatOpDesc(
                                group=group, shape=allgather_shape
                            )
1697
                        ]
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
                    else:
                        op_desc_seq[process] = (
                            [
                                AllGatherOpDesc(
                                    group=group,
                                    shape=allgather_shape,
                                    is_bool=(
                                        source_tensor.dtype == paddle.bool
                                    ),
                                ),
                                ConcatOpDesc(
                                    partition_index_list=all_partition_index_list
                                ),
                                slice_op_desc,
                            ]
                            if len(group) > 1
                            else [slice_op_desc]
                        )
1716 1717 1718

        return op_desc_seq

1719 1720 1721
    def parse_op_desc(
        self, block, op_desc_seq, var_name, reshard_op, dist_attr
    ):
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
        """Parse op desc sequence and insert op in the block"""
        tensor_list = []
        partition_tensor_list = []
        if self.rank_id not in op_desc_seq.keys():
            return
        op_desc_list = op_desc_seq[self.rank_id]

        idx = None
        for index, op in list(enumerate(block.ops)):
            if op.desc.id == reshard_op.desc.id:
                idx = index
                break
1734 1735 1736 1737 1738
        assert (
            idx is not None
        ), "The op for reshard cannot be found in the rank {} program.".format(
            self.rank_id
        )
1739 1740

        matched_op = block.ops[idx]
1741 1742 1743
        source_tensor = get_var_with_recursion(
            var_name, block, self.auto_parallel_main_prog
        )
1744 1745 1746 1747
        for op_desc in op_desc_list:
            if isinstance(op_desc, AllGatherOpDesc):  # noqa: F401
                if var_name not in self.has_allgather.keys():
                    self.has_allgather[var_name] = []
1748 1749 1750 1751 1752
                if not self.has_allgather[
                    var_name
                ] or op_desc.group not in list(
                    map(lambda x: x[0], self.has_allgather[var_name])
                ):
1753 1754 1755
                    if op_desc.is_bool:
                        # for bool data allgather, cast to int64 -> allgather -> cast bool
                        out_cast = Inserter.insert_cast_op(
1756 1757 1758 1759 1760 1761
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
1762
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1763 1764 1765 1766 1767 1768
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1769 1770 1771 1772
                        idx += idx_offset
                        tensor_name_list = []
                        for var in tensor_list:
                            out_cast = Inserter.insert_cast_op(
1773 1774 1775 1776 1777 1778
                                block,
                                idx,
                                var,
                                reshard_op.attr('op_role'),
                                paddle.bool,
                            )
1779 1780 1781
                            tensor_name_list.append(out_cast.name)
                            idx += 1
                        self.has_allgather[var_name].append(
1782 1783
                            [op_desc.group, tensor_name_list]
                        )
1784 1785
                    else:
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1786 1787 1788 1789 1790 1791
                            block,
                            idx,
                            source_tensor,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1792 1793 1794
                        idx += idx_offset
                        tensor_name_list = [var.name for var in tensor_list]
                        self.has_allgather[var_name].append(
1795 1796
                            [op_desc.group, tensor_name_list]
                        )
1797 1798 1799 1800
                else:
                    for item in self.has_allgather[var_name]:
                        if op_desc.group == item[0]:
                            tensor_list = [
C
caozhou 已提交
1801
                                get_var_with_recursion(
1802 1803 1804 1805
                                    var_name,
                                    block,
                                    self.auto_parallel_main_prog,
                                )
1806 1807 1808
                                for var_name in item[1]
                            ]
                            break
1809 1810 1811
                assert (
                    tensor_list
                ), "The result of parsing allgather op should not be None."
1812 1813 1814 1815 1816

            elif isinstance(op_desc, SendOpDesc):
                if var_name not in self.has_sent.keys():
                    self.has_sent[var_name] = []
                if op_desc.dst not in self.has_sent[var_name]:
1817 1818
                    if op_desc.is_bool:
                        out_cast = Inserter.insert_cast_op(
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
                        Inserter.insert_send_op(
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1833 1834
                        idx += 2
                    else:
1835 1836 1837 1838 1839 1840 1841 1842
                        Inserter.insert_send_op(
                            block,
                            idx,
                            source_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1843
                        idx += 1
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
                    self.has_sent[var_name].append(op_desc.dst)

            elif isinstance(op_desc, RecvOpDesc):
                if var_name not in self.has_recv.keys():
                    self.has_recv[var_name] = {}
                if op_desc.src not in self.has_recv[var_name].keys():
                    partition_index = op_desc.partition_index
                    shape = []
                    for index in partition_index:
                        shape.append(index[1] - index[0])
1854 1855 1856 1857 1858 1859 1860
                    if op_desc.is_bool:
                        # for bool data, recv int64 -> cast to bool
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=paddle.int64,
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1871
                        out_cast = Inserter.insert_cast_op(
1872 1873 1874 1875 1876 1877
                            block,
                            idx + 1,
                            recv_tensor,
                            reshard_op.attr('op_role'),
                            paddle.bool,
                        )
1878 1879 1880 1881 1882 1883 1884 1885 1886
                        tensor_list.append(out_cast)
                        idx += 2
                        self.has_recv[var_name][op_desc.src] = out_cast
                    else:
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=source_tensor.dtype,
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1897 1898 1899 1900 1901

                        # for lod tensor, need reset lod after received
                        if recv_tensor.lod_level != 0:
                            set_lod = False
                            # use data lod to reset tensor lod
1902 1903 1904
                            for (
                                tmp_block
                            ) in self.auto_parallel_main_prog.blocks:
1905 1906
                                for tmp_var_name in tmp_block.vars:
                                    tmp_var = tmp_block.vars[tmp_var_name]
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
                                    if (
                                        tmp_var.is_data
                                        and tmp_var.lod_level
                                        == recv_tensor.lod_level
                                    ):
                                        reset_lod_out = (
                                            Inserter.insert_reset_lod_op(
                                                block,
                                                idx + 1,
                                                recv_tensor,
                                                tmp_var,
                                                reshard_op.attr('op_role'),
                                            )
                                        )
1921 1922 1923
                                        tensor_list.append(reset_lod_out)
                                        idx += 2
                                        self.has_recv[var_name][
1924 1925
                                            op_desc.src
                                        ] = reset_lod_out
1926 1927 1928 1929 1930 1931 1932 1933 1934
                                        set_lod = True
                                        break
                                if set_lod:
                                    break
                            assert set_lod is True
                        else:
                            tensor_list.append(recv_tensor)
                            idx += 1
                            self.has_recv[var_name][op_desc.src] = recv_tensor
1935 1936 1937 1938 1939 1940 1941 1942
                else:
                    tensor_list.append(self.has_recv[var_name][op_desc.src])

            elif isinstance(op_desc, ConcatOpDesc):
                partition_index_list = op_desc.partition_index_list
                idx_list = [idx]
                for index, tensor in enumerate(tensor_list):
                    Inserter.concat_partitions_with_op(
1943 1944 1945 1946 1947 1948 1949
                        partition_tensor_list,
                        tensor,
                        partition_index_list[index],
                        block,
                        idx_list,
                        reshard_op.attr('op_role'),
                    )
1950 1951
                idx = idx_list[0]

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
            elif isinstance(op_desc, SliceOpDesc) or isinstance(
                op_desc, AllGatherConcatOpDesc
            ):
                target_tensor = None
                if isinstance(op_desc, SliceOpDesc):
                    assert (
                        len(partition_tensor_list) == 1
                        or not partition_tensor_list
                    )
                    to_slice_tensor = (
                        partition_tensor_list[0][0]
                        if len(partition_tensor_list) == 1
                        else source_tensor
                    )
                    new_name = unique_name.generate(var_name + "@RESHARD")
                    target_tensor = Inserter.insert_slice_op(
                        block,
                        idx,
                        to_slice_tensor,
                        starts=op_desc.starts,
                        ends=op_desc.ends,
                        axes=op_desc.axes,
                        new_var_name=new_name,
                        op_role=reshard_op.attr('op_role'),
                    )
                else:
                    target_tensor = Inserter.insert_c_concat_op(
                        block,
                        idx,
                        source_tensor,
                        op_desc.group,
                        reshard_op.attr('op_role'),
                    )
1985

1986
                assert target_tensor is not None
1987 1988 1989
                process_mesh = dist_attr[0]
                dims_mapping = dist_attr[1]

1990
                tensor_attr = TensorDistAttr()
1991 1992 1993
                tensor_attr.dims_mapping = dims_mapping
                tensor_attr.process_mesh = process_mesh
                self.dist_context.set_tensor_dist_attr_for_program(
1994 1995
                    target_tensor, tensor_attr
                )
1996

1997
                if matched_op.type == "while":
1998
                    # var_reshard_mapping means the while op input need be changed to
1999 2000 2001 2002 2003 2004
                    if (
                        "var_reshard_mapping"
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ].keys()
                    ):
2005
                        Resharder.while_block_info[op.attr("sub_block").id][
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
                            "var_reshard_mapping"
                        ] = {}
                    if (
                        var_name
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ]["var_reshard_mapping"].keys()
                    ):
                        Resharder.while_block_info[op.attr("sub_block").id][
                            "var_reshard_mapping"
                        ][var_name] = []
2017
                    Resharder.while_block_info[op.attr("sub_block").id][
2018 2019
                        "var_reshard_mapping"
                    ][var_name].append([dist_attr, target_tensor.name])
2020 2021 2022

                # rename op input name according to new name
                for op in block.ops:
2023 2024
                    # just for while op
                    while_op_X_append = []
2025
                    for name in op.input_arg_names:
2026 2027 2028
                        op_dist_attr = (
                            self.dist_context.get_op_dist_attr_for_program(op)
                        )
2029 2030
                        if name == var_name and op_dist_attr is not None:
                            if op.desc.id() == matched_op.desc.id():
2031
                                if matched_op.type == "while":
2032 2033 2034
                                    op.desc._rename_input(
                                        name, target_tensor.name
                                    )
2035 2036 2037
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
2038 2039 2040 2041 2042
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
2043
                                    op_dist_attr.set_input_dist_attr(
2044 2045
                                        new_name, op_input_dist_attr
                                    )
2046
                                    op_dist_attr.set_input_dims_mapping(
2047 2048
                                        new_name, dims_mapping
                                    )
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
                                    # if (
                                    #     old_name
                                    #     in op_dist_attr._inputs_dist_attrs
                                    # ):
                                    #     op_dist_attr.del_input_dist_attr(
                                    #         old_name
                                    #     )
                                    op_dist_attr.set_input_dims_mapping(
                                        new_name, dims_mapping
                                    )
2059 2060 2061 2062
                                    while_op_X_append.append(new_name)
                                    continue
                                else:
                                    op.desc._rename_input(
2063 2064
                                        name, target_tensor.name
                                    )
2065 2066 2067
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
2068 2069 2070 2071 2072
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
2073
                                    op_dist_attr.set_input_dist_attr(
2074 2075
                                        new_name, op_input_dist_attr
                                    )
2076
                                    op_dist_attr.set_input_dims_mapping(
2077 2078
                                        new_name, dims_mapping
                                    )
2079 2080 2081 2082
                                    # op_dist_attr.del_input_dist_attr(old_name)
                                    op_dist_attr.set_input_dims_mapping(
                                        new_name, dims_mapping
                                    )
2083
                                    continue
2084 2085

                            op_process_mesh = op_dist_attr.process_mesh
2086 2087 2088
                            op_input_dims_mapping = (
                                op_dist_attr.get_input_dims_mapping(var_name)
                            )
2089
                            # NOTE: For op whose process mesh is a union, its input will not be renamed by other op reshard result now which means that it will have more reshard operation.
2090 2091 2092 2093
                            if (
                                op_process_mesh == process_mesh
                                and op_input_dims_mapping == dims_mapping
                            ):
2094
                                op.desc._rename_input(name, target_tensor.name)
2095 2096 2097
                                old_name = name
                                new_name = target_tensor.name
                                assert old_name != new_name
2098 2099 2100
                                op_input_dist_attr = (
                                    op_dist_attr.get_input_dist_attr(old_name)
                                )
2101
                                op_dist_attr.set_input_dist_attr(
2102 2103
                                    new_name, op_input_dist_attr
                                )
2104
                                op_dist_attr.set_input_dims_mapping(
2105 2106
                                    new_name, dims_mapping
                                )
2107 2108 2109 2110
                                # op_dist_attr.del_input_dist_attr(old_name)
                                op_dist_attr.set_input_dims_mapping(
                                    new_name, dims_mapping
                                )
2111

2112 2113 2114
                    # for while op, the input X should reset
                    if while_op_X_append:
                        proto = OpProtoHolder.instance().get_op_proto(op.type)
2115 2116 2117 2118
                        op.desc.set_input(
                            proto.inputs[0].name,
                            op.input("X") + while_op_X_append,
                        )
2119

2120
    def _get_subblock_input_attrs(self, op, var_name):
2121
        # NOTE: Multi while loop is not supported
2122
        assert op.type in _g_subblock_ops
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        input_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.input_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    input_dims_mapping = dist_attr.get_input_dims_mapping(
2136 2137
                        var_name
                    )
2138 2139
                    has_exist = False
                    for input_attr in input_attrs:
2140 2141 2142 2143
                        if (
                            process_mesh == input_attr[0]
                            and input_dims_mapping == input_attr[1]
                        ):
2144 2145 2146 2147 2148 2149
                            has_exist = True
                            break
                    if not has_exist:
                        input_attrs.append([process_mesh, input_dims_mapping])
        return input_attrs

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
    def _get_subblock_output_attrs(self, op, var_name):
        # NOTE: Multi while loop is not supported
        assert op.type in _g_subblock_ops
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        output_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.output_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    output_dims_mapping = dist_attr.get_output_dims_mapping(
                        var_name
                    )
                    has_exist = False
                    for output_attr in output_attrs:
                        if (
                            process_mesh == output_attrs[0]
                            and output_dims_mapping == output_attrs[1]
                        ):
                            has_exist = True
                            break
                    if not has_exist:
                        output_attrs.append([process_mesh, output_dims_mapping])
        return output_attrs

2180 2181 2182 2183 2184 2185
    def _get_common_op_input_attrs(self, op, var_name):
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        dist_attr = dist_op.dist_attr
        op_process_mesh = dist_attr.process_mesh
        for process_mesh in self.dist_context.process_meshes:
2186 2187 2188 2189 2190
            if set(process_mesh.process_ids) & (
                set(op_process_mesh.process_ids)
            ) and len(process_mesh.process_ids) < len(
                op_process_mesh.process_ids
            ):
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
                process_meshes.append(process_mesh)

        # it means that the process mesh is not a union when process meshes is none
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        input_dims_mapping = dist_attr.get_input_dims_mapping(var_name)
        input_attrs = []
        for process_mesh in process_meshes:
            input_attrs.append([process_mesh, input_dims_mapping])

        return input_attrs

    def get_op_input_attrs(self, op, var_name):
        op_input_attrs = []
2206

2207 2208
        if op.type in _g_subblock_ops:
            op_input_attrs = self._get_subblock_input_attrs(op, var_name)
2209 2210 2211 2212 2213
            if not op_input_attrs:
                # NOTE: [hack method]
                # Adapt to quantization pass, which presist_vars, including inputs and outputs, all are in global_block.
                # Therefore, the while_op's inputs will contain the all persist_vars, which will be inputs or output of the quantization op in subblock.
                op_input_attrs = self._get_subblock_output_attrs(op, var_name)
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        else:
            op_input_attrs = self._get_common_op_input_attrs(op, var_name)

        assert op_input_attrs

        return op_input_attrs

    def _remove_global_process_mesh(self):
        """Remove global process mesh from dist_context.process_meshes"""
        processes = set()
        process_mesh_count = len(self.dist_context.process_meshes)
        if process_mesh_count > 1:
            global_process_mesh_idx = None
            for process_mesh in self.dist_context.process_meshes:
2228
                for process in process_mesh.process_ids:
2229 2230
                    processes.add(process)
            for idx, process_mesh in enumerate(
2231 2232
                self.dist_context.process_meshes
            ):
2233
                if len(set(process_mesh.process_ids)) == len(processes):
2234 2235
                    global_process_mesh_idx = idx
                    break
2236

2237
            if global_process_mesh_idx is not None:
2238 2239 2240 2241 2242
                is_removed = False
                global_mesh = self.dist_context.process_meshes[idx]
                for i, mesh in enumerate(self.dist_context.process_meshes):
                    if i == idx:
                        continue
2243
                    if set(mesh.process_ids) < set(global_mesh.process_ids):
2244 2245 2246 2247
                        is_removed = True

                if is_removed:
                    self.dist_context.process_meshes.pop(idx)
2248 2249 2250 2251

    def _change_subblock_op_input_and_output(self, block_idx, block):
        if "var_reshard_mapping" in Resharder.while_block_info[block_idx]:
            var_reshard_mapping = Resharder.while_block_info[block_idx][
2252 2253
                "var_reshard_mapping"
            ]
2254 2255 2256 2257 2258 2259 2260 2261
            for op in block.ops:
                for var_name in op.input_arg_names:
                    if var_name in var_reshard_mapping:
                        # in while sub block, the union process mesh is not split before reshard sub block
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        dist_attr = dist_op.dist_attr
                        target_name = None
                        for item in var_reshard_mapping[var_name]:
2262 2263 2264 2265 2266
                            if (
                                dist_attr.process_mesh == item[0][0]
                                and dist_attr.get_input_dims_mapping(var_name)
                                == item[0][1]
                            ):
2267 2268 2269 2270 2271 2272 2273
                                target_name = item[1]
                                break
                        if target_name is None:
                            continue
                        else:
                            op.desc._rename_input(var_name, target_name)
                            dist_op = self.dist_context.get_dist_op_for_program(
2274 2275
                                op
                            )
2276 2277 2278 2279
                            op_dist_attr = dist_op.dist_attr
                            old_name = var_name
                            new_name = target_name
                            assert old_name != new_name
2280 2281 2282
                            op_input_dist_attr = (
                                op_dist_attr.get_input_dist_attr(old_name)
                            )
2283
                            op_dist_attr.set_input_dist_attr(
2284 2285
                                new_name, op_input_dist_attr
                            )
2286
                            # op_dist_attr.del_input_dist_attr(old_name)
2287 2288 2289 2290 2291 2292

                # the outputs also need to be renamed when the output name is the same with input name in inplace op
                for var_name in op.output_arg_names:
                    # if the tensor has been resharded multiply, it is not supported now.
                    if var_name in var_reshard_mapping:
                        if len(var_reshard_mapping[var_name]) > 1:
2293
                            raise ValueError(
2294
                                "The scene is not supported that the output is inplaced and the tensor has been resharded multiply when as input."
2295
                            )
2296 2297 2298 2299 2300 2301 2302 2303 2304
                        target_name = var_reshard_mapping[var_name][0][1]

                        op.desc._rename_output(var_name, target_name)
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        op_dist_attr = dist_op.dist_attr
                        old_name = var_name
                        new_name = target_name
                        assert old_name != new_name
                        op_output_dist_attr = op_dist_attr.get_output_dist_attr(
2305 2306
                            old_name
                        )
2307
                        op_dist_attr.set_output_dist_attr(
2308 2309
                            new_name, op_output_dist_attr
                        )
2310
                        # op_dist_attr.del_output_dist_attr(old_name)
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

    def _reshard_input(self, block):
        idx = 0
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]

            if self.is_special_op(op):
                idx += 1
                continue

            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None:
2324 2325 2326
                op_input_dist_attrs = (
                    []
                )  # [(op_process_mesh, op_input_dims_mapping), (op_process_mesh, op_input_dims_mapping)]
2327
                if op.type in _g_subblock_ops:
2328 2329 2330 2331
                    if not self.is_condition_replicative(op):
                        raise ValueError(
                            "Please check the condition due to the dims mapping is not replicative."
                        )
2332 2333 2334 2335
                    if (
                        op.attr("sub_block").id
                        not in Resharder.while_block_info
                    ):
2336
                        Resharder.while_block_info[op.attr("sub_block").id] = {}
2337 2338 2339
                    Resharder.while_block_info[op.attr("sub_block").id][
                        "op_id"
                    ] = op.desc.id()
2340 2341 2342 2343

                if op.type == "while":
                    # condition var process mesh is the same with op and dims_mapping is replicative, so it do not need reshard
                    input_var_names = op.input("X")
2344 2345
                elif op.type == "conditional_block":
                    input_var_names = op.input("Input")
2346
                else:
2347 2348 2349 2350 2351 2352
                    input_var_names = op.input_arg_names
                # to avoid while op X order different
                input_var_names.sort()

                idx_offset = 0
                for var_name in input_var_names:
2353 2354
                    # skip lod_tensor_blocking_queue_? name
                    if "lod_tensor_blocking_queue" in var_name:
2355
                        continue
2356 2357 2358
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2359
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2360 2361
                        var
                    )
2362 2363 2364

                    # judge whether union tensor dims_mapping all -1
                    is_union_process_mesh_tensor = False
2365 2366 2367 2368 2369
                    if (
                        dist_tensor.dist_attr.process_mesh
                        not in self.dist_context.process_meshes
                        and self.dist_context.process_meshes
                    ):
2370 2371
                        is_union_process_mesh_tensor = True
                        assert dist_tensor.dist_attr.dims_mapping.count(
2372 2373
                            -1
                        ) == len(dist_tensor.dist_attr.dims_mapping)
2374 2375 2376 2377 2378 2379 2380 2381

                    op_input_attrs = self.get_op_input_attrs(op, var_name)
                    for input_attr in op_input_attrs:
                        input_process_mesh = None

                        # deal with union tensor
                        if is_union_process_mesh_tensor:
                            # if op process mesh is subset of union tensor process mesh, need no reshard
2382 2383
                            if set(input_attr[0].process_ids) <= set(
                                dist_tensor.dist_attr.process_mesh.process_ids
2384 2385
                            ):
                                continue
2386 2387

                        if dist_tensor is not None and self.need_reshard(
2388 2389
                            dist_tensor, input_attr
                        ):
2390
                            reshard_op_desc = self.find_op_desc_seq(
2391 2392 2393 2394 2395
                                dist_tensor, input_attr
                            )
                            self.parse_op_desc(
                                block, reshard_op_desc, var_name, op, input_attr
                            )
2396
                            cur_op_count = len(block.ops)
2397 2398 2399
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2400
                            pre_op_count = cur_op_count
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
                idx = idx + idx_offset + 1
            else:
                idx += 1

    def _hadnle_recv(self, block, idx, var, op, send_rank, recv_rank):
        if self.rank_id == recv_rank:
            # if recv bool data, recv then cast
            if var.dtype == paddle.bool:
                recv_cast_out = block.create_var(
                    name=unique_name.generate(var.name + "@recv"),
                    shape=var.shape,
                    lod_level=var.lod_level,
                    dtype=paddle.int64,
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
                    type=var.type,
                )
                Inserter.insert_recv_op(
                    block,
                    idx + 1,
                    recv_cast_out,
                    send_rank,
                    recv_rank,
                    op.attr('op_role'),
                )
2424 2425 2426 2427 2428 2429
                reset_lod_out = None
                if var.lod_level != 0:
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2430 2431 2432 2433
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2434
                                reset_lod_out = block.create_var(
2435 2436 2437
                                    name=unique_name.generate(
                                        var.name + "@RESETLOD"
                                    ),
2438 2439 2440
                                    shape=recv_cast_out.shape,
                                    type=recv_cast_out.type,
                                    dtype=recv_cast_out.dtype,
2441 2442
                                    lod_level=recv_cast_out.lod_level,
                                )
2443 2444 2445 2446
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2447
                                    inputs={'X': recv_cast_out, 'Y': tmp_var},
2448
                                    outputs={'Out': reset_lod_out},
2449 2450
                                    attrs={'op_role': op.attr("op_role")},
                                )
2451 2452 2453 2454 2455 2456 2457
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True

                # cast int64 to bool
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
                block._insert_op(
                    idx + 2,
                    type='cast',
                    inputs={
                        'X': [recv_cast_out]
                        if reset_lod_out is None
                        else [reset_lod_out]
                    },
                    outputs={'Out': [var]},
                    attrs={
                        'in_dtype': recv_cast_out.dtype,
                        'out_dtype': var.dtype,
                        'op_role': op.attr('op_role'),
                    },
                )
2473 2474 2475 2476 2477 2478 2479
            else:
                if var.lod_level != 0:
                    recv_out = block.create_var(
                        name=unique_name.generate(var.name + "@recv"),
                        shape=var.shape,
                        lod_level=var.lod_level,
                        dtype=var.int64,
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
                        type=var.type,
                    )
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        recv_out,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2490 2491 2492 2493
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2494 2495 2496 2497
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2498 2499 2500 2501
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2502
                                    inputs={'X': recv_out, 'Y': tmp_var},
2503
                                    outputs={'Out': var},
2504 2505
                                    attrs={'op_role': op.attr("op_role")},
                                )
2506 2507 2508 2509 2510
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True
2511
                else:
2512 2513 2514 2515 2516 2517 2518 2519
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        var,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2520 2521 2522

    def _handle_send(self, block, idx, var, op, send_rank, recv_rank):
        if var.dtype == paddle.bool:
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
            cast_out = Inserter.insert_cast_op(
                block, idx + 1, var, op.attr('op_role'), paddle.int64
            )
            Inserter.insert_send_op(
                block,
                idx + 2,
                cast_out,
                send_rank,
                recv_rank,
                op.attr('op_role'),
            )
2534
        else:
2535 2536 2537
            Inserter.insert_send_op(
                block, idx + 1, var, send_rank, recv_rank, op.attr('op_role')
            )
2538 2539 2540 2541 2542 2543

    def _reshard_output(self, block):
        # insert send and recv op if output process mesh is different from tensor process mesh
        idx = 0
        # skip reader and ops whose process mesh is union
        skip_ops = [
2544 2545 2546 2547 2548
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
            "write_to_array",
            "read_from_array",
2549 2550
            "nop",
            "depend",
2551 2552 2553
        ]
        global _g_special_ops
        skip_ops += _g_special_ops
2554
        skip_ops += _g_subblock_ops
2555 2556 2557 2558 2559 2560 2561
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None and op.type not in skip_ops:
                idx_offset = 0
                for var_name in op.output_arg_names:
2562 2563 2564
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2565
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2566 2567
                        var
                    )
2568 2569 2570
                    tensor_process_mesh = dist_tensor.dist_attr.process_mesh
                    output_attr = [
                        dist_op.dist_attr.process_mesh,
2571
                        dist_op.dist_attr.get_output_dims_mapping(var_name),
2572 2573
                    ]
                    if dist_tensor is not None and self.need_reshard(
2574 2575
                        dist_tensor, output_attr, False
                    ):
2576
                        tensor_processes = set(
2577
                            tensor_process_mesh.process_ids
2578
                        ) - (
2579 2580
                            set(tensor_process_mesh.process_ids)
                            & set(output_attr[0].process_ids)
2581
                        )
2582 2583
                        if tensor_processes:
                            if len(tensor_processes) != len(
2584
                                output_attr[0].process_ids
2585
                            ):
2586
                                if dist_tensor.dist_attr.dims_mapping.count(
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
                                    -1
                                ) != len(
                                    dist_tensor.dist_attr.dims_mapping
                                ) or output_attr[
                                    1
                                ].count(
                                    -1
                                ) != len(
                                    output_attr[1]
                                ):
2597
                                    raise ValueError(
2598 2599
                                        "The dims_mapping must be -1"
                                    )
2600 2601
                                else:
                                    for index, tensor_process in enumerate(
2602 2603
                                        tensor_processes
                                    ):
2604 2605 2606
                                        recv_rank = tensor_process
                                        actual_index = index
                                        if index >= len(
2607
                                            output_attr[0].process_ids
2608
                                        ):
2609
                                            actual_index = (
2610
                                                index
2611 2612 2613 2614 2615
                                                - len(
                                                    output_attr[0].process_ids
                                                )
                                            ) % len(output_attr[0].process_ids)
                                        item = output_attr[0].process_ids[
2616 2617
                                            actual_index
                                        ]
2618 2619 2620 2621 2622
                                        if recv_rank == item:
                                            continue
                                        if self.rank_id == item:
                                            # if send bool data, cast then send
                                            self._handle_send(
2623 2624 2625 2626 2627 2628 2629
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2630 2631 2632
                                        if self.rank_id == recv_rank:
                                            # if recv bool data, recv then cast
                                            self._hadnle_recv(
2633 2634 2635 2636 2637 2638 2639
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2640 2641
                            else:
                                for index, tensor_process in enumerate(
2642 2643
                                    tensor_processes
                                ):
2644
                                    recv_rank = tensor_process
2645
                                    item = output_attr[0].process_ids[index]
2646 2647 2648 2649 2650
                                    if recv_rank == item:
                                        continue
                                    if self.rank_id == item:
                                        # if send bool data, cast then send
                                        self._handle_send(
2651 2652
                                            block, idx, var, op, item, recv_rank
                                        )
2653 2654 2655
                                    if self.rank_id == recv_rank:
                                        # if recv bool data, recv then cast
                                        self._hadnle_recv(
2656 2657
                                            block, idx, var, op, item, recv_rank
                                        )
2658 2659

                            cur_op_count = len(block.ops)
2660 2661 2662
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
                            pre_op_count = cur_op_count

                idx = idx + idx_offset + 1
            else:
                idx += 1

    def reshard(self):
        self._remove_global_process_mesh()
        for block_idx, block in enumerate(self.auto_parallel_main_prog.blocks):
            # change the var_name before resharding sub block
            if block_idx in Resharder.while_block_info:
                self._change_subblock_op_input_and_output(block_idx, block)

            # reshard input
            self._reshard_input(block)

            # reshard output
            # NOTE: Only support that insert send and recv op if output process mesh is different from tensor process mesh
            self._reshard_output(block)
2682 2683

        # remove no need vars and ops in the main program
2684 2685 2686 2687 2688 2689
        Remover.remove_no_need_in_main(
            self.auto_parallel_main_prog,
            self.dist_context,
            self.rank_id,
            self.dist_params_grads,
        )
2690

2691
        # remove no need vars and ops in the startip program
2692 2693 2694
        Remover.remove_no_need_in_startup(
            self.auto_parallel_main_prog, self.auto_parallel_startup_prog
        )
C
caozhou 已提交
2695

2696 2697
        # reset some variable when remove operation ended
        Resharder.while_block_info = {}
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711

    def get_cost(self, op, tensor, cluster):
        # NOTE: The program should be the serial_program which is not been parted
        global _g_special_ops
        not_supported_op_type = _g_special_ops + ["while"]
        reshard_op_cost = None
        if op.type in not_supported_op_type:
            return reshard_op_cost
        else:
            tensor_name = tensor.name
            if tensor_name == "lod_tensor_blocking_queue_0":
                return reshard_op_cost
            else:
                dist_tensor = self.dist_context.get_dist_tensor_for_program(
2712 2713
                    tensor
                )
2714 2715 2716
                # simplified processing: ignore union process mesh and output reshard
                dist_op = self.dist_context.get_dist_op_for_program(op)
                dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
2717 2718
                    tensor.name
                )
2719 2720 2721
                process_mesh = dist_op.dist_attr.process_mesh
                dist_attr = [process_mesh, dims_mapping]
                if dist_tensor is not None and self.need_reshard(
2722 2723
                    dist_tensor, dist_attr
                ):
2724 2725 2726 2727 2728
                    if tensor_name not in self._has_resharded:
                        self._has_resharded[tensor_name] = [dist_op]
                    else:
                        for item in self._has_resharded[tensor_name]:
                            item_dist_attr = item.dist_attr
2729 2730 2731 2732 2733
                            item_dims_mapping = (
                                item_dist_attr.get_input_dims_mapping(
                                    tensor_name
                                )
                            )
2734
                            item_process_mesh = item_dist_attr.process_mesh
2735 2736 2737 2738
                            if (
                                dims_mapping == item_dims_mapping
                                and item_process_mesh == process_mesh
                            ):
2739 2740 2741
                                return reshard_op_cost
                        self._has_resharded[tensor_name].append(dist_op)

2742 2743 2744
                    reshard_op_desc = self.find_op_desc_seq(
                        dist_tensor, dist_attr, serial=True
                    )
2745 2746
                    dtype = dist_tensor.serial_tensor.dtype
                    reshard_op_cost = self.parse_op_desc_for_cost(
2747 2748
                        reshard_op_desc, dtype, cluster
                    )
2749 2750 2751

        return reshard_op_cost

2752 2753 2754 2755 2756 2757 2758 2759 2760
    def _concat_partitions_for_cost(
        self,
        partition_tensor_list,
        partition_index,
        dtype,
        rank_id,
        local_rank_comp_cost,
        cluster,
    ):
2761 2762 2763 2764 2765 2766
        if not partition_tensor_list:
            partition_tensor_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
2767 2768 2769 2770 2771 2772 2773
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i], partition_index
                )
2774 2775 2776 2777 2778 2779 2780
                if concat_axis != -1:
                    has_concat = True
                    concat_desc = {}
                    concat_desc["op"] = "concat"
                    concat_desc["attrs"] = {"axis": concat_axis}
                    if first_order == 0:
                        concat_desc["inputs"] = {
2781 2782 2783 2784
                            "X": [
                                (dtype, partition_tensor_list[i]),
                                (dtype, partition_index),
                            ]
2785 2786 2787
                        }
                    else:
                        concat_desc["inputs"] = {
2788 2789 2790 2791
                            "X": [
                                (dtype, partition_index),
                                (dtype, partition_tensor_list[i]),
                            ]
2792 2793 2794 2795 2796
                        }
                    partition_tensor_list.pop(i)
                    if rank_id not in local_rank_comp_cost:
                        local_rank_comp_cost[rank_id] = []
                    local_rank_comp_cost[rank_id].append(
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
                        ConcatOpCost(op_desc=concat_desc, cluster=cluster)
                    )
                    self._concat_partitions_for_cost(
                        partition_tensor_list,
                        new_partition,
                        dtype,
                        rank_id,
                        local_rank_comp_cost,
                        cluster,
                    )
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append(partition_index)

    def parse_op_desc_for_cost(self, reshard_op_desc, dtype, cluster):
        def _get_idx(comm_ranks, group_ranks):
            res, is_the_same = None, False
            idx = 0
            while idx < len(comm_ranks):
                if comm_ranks[idx] == set(group_ranks):
                    is_the_same = True

                for rank in group_ranks:
                    if rank in comm_ranks[idx]:
                        res = idx
                        comm_ranks[idx].add(rank)
                if res is None:
                    idx += 1
                else:
                    break
            return res, is_the_same

        comm_context = CommContext(cluster)
        # run communication op before computation op
        # TODO: Communication cost is not calculated when the var has been transfered by the same group in the past
        comm_costs = []
        comm_ranks = []
        local_rank_comp_cost = {}
        for key in reshard_op_desc:
            partition_tensor_list = []
            op_desc_list = reshard_op_desc[key]
            for op_desc in op_desc_list:
                if isinstance(op_desc, SendOpDesc):
                    group_ranks = [key, op_desc.dst]
                    shape = op_desc.shape
2843 2844 2845
                    send_desc = build_comm_desc(
                        "send_v2", group_ranks, dtype, shape
                    )
2846 2847
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2859 2860 2861 2862
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2863 2864 2865 2866 2867 2868 2869 2870
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2871 2872 2873 2874
                elif isinstance(op_desc, AllGatherOpDesc):
                    # NOTE: fill_const and other unnecessary op is not calculated because those cost is very small
                    group_ranks = op_desc.group
                    shape = op_desc.shape
2875 2876 2877
                    allgather_desc = build_comm_desc(
                        "c_allgather", group_ranks, dtype, shape
                    )
2878 2879 2880 2881 2882 2883 2884 2885
                    split_inputs_shape = []
                    for idx, dim in enumerate(shape):
                        if idx == 0:
                            split_inputs_shape.append(dim * len(group_ranks))
                        else:
                            split_inputs_shape.append(dim)
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2897 2898 2899 2900
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2901 2902 2903 2904 2905 2906 2907 2908
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
                    # calc the split op cost
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
                    split_desc = {}
                    split_desc["op"] = "split"
                    split_desc["inputs"] = {
                        "inputs": [(dtype, split_inputs_shape)]
                    }
                    split_desc["attrs"] = {"num": len(group_ranks), "axis": 0}
                    local_rank_comp_cost[key].append(
2919 2920
                        SplitOpCost(op_desc=split_desc, cluster=cluster)
                    )
2921 2922 2923 2924
                elif isinstance(op_desc, ConcatOpDesc):
                    partition_index_list = op_desc._partition_index_list
                    for idx, partion_idex in enumerate(partition_index_list):
                        self._concat_partitions_for_cost(
2925 2926 2927 2928 2929 2930 2931
                            partition_tensor_list,
                            partion_idex,
                            dtype,
                            key,
                            local_rank_comp_cost,
                            cluster,
                        )
2932 2933 2934 2935

                elif isinstance(op_desc, SliceOpDesc):
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
2936 2937 2938 2939
                    assert (
                        len(partition_tensor_list) == 1
                        or not partition_tensor_list
                    )
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
                    to_slice_tensor_shape = []
                    if len(partition_tensor_list) == 1:
                        for item in partition_tensor_list[0]:
                            to_slice_tensor_shape.append(item[1] - item[0])
                    else:
                        to_slice_tensor_shape = op_desc.shape
                    slice_desc = {}
                    slice_desc["op"] = "slice"
                    infer_flags = list(1 for i in range(len(op_desc.axes)))
                    slice_desc["attrs"] = {
                        "axes": op_desc.axes,
                        "starts": op_desc.starts,
                        "ends": op_desc.ends,
2953
                        "infer_flags": infer_flags,
2954 2955 2956 2957 2958
                    }
                    slice_desc["inputs"] = {
                        "Input": [(dtype, to_slice_tensor_shape)]
                    }
                    local_rank_comp_cost[key].append(
2959 2960
                        SliceOpCost(op_desc=slice_desc, cluster=cluster)
                    )
2961 2962 2963 2964

        res = (comm_costs, local_rank_comp_cost)

        return res