reshard.py 116.6 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from functools import reduce

import paddle
import paddle.fluid.core as core
import paddle.fluid.layers.utils as utils
20 21 22 23 24 25 26 27 28 29 30 31 32 33
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.fluid.framework import OpProtoHolder, Program
from paddle.fluid.layer_helper import LayerHelper
from paddle.utils import unique_name

from .cost import (
    AllgatherOpCost,
    CommContext,
    ConcatOpCost,
    SendOpCost,
    SliceOpCost,
    SplitOpCost,
    build_comm_desc,
)
34
from .dist_attribute import TensorDistributedAttribute
35
from .dist_context import DistributedContext
36 37
from .process_group import new_process_group
from .utils import is_gradient_clip_op
C
caozhou 已提交
38

39
# NOTE: If op in _g_special_ops or _g_gradient_clip_ops, it will not be resharded.
40
_g_special_ops = ['check_finite_and_unscale', 'update_loss_scaling']
41
_g_gradient_clip_ops = [
42 43 44 45 46
    "sum",
    "sqrt",
    "fill_constant",
    "elementwise_max",
    "elementwise_div",
47
]
48
_g_subblock_ops = ["while", "conditional_block"]
49 50 51 52 53 54 55 56


def get_var_with_recursion(var_name, block, program):
    """Get var in the parent block if not found in the current block"""
    var = None
    if var_name in block.vars:
        var = block.vars[var_name]
    else:
57 58 59 60 61
        var = block._var_recursive(var_name)
        # parent_block = program.blocks[block.parent_idx]
        # if var_name in parent_block.vars:
        #     var = parent_block.vars[var_name]
    assert var is not None, "{} is not found".format(var.name)
62

63
    return var
64

C
caozhou 已提交
65 66 67 68 69 70 71

class AllGatherOpDesc:
    """
    Describe the allgather op in the reshard phase.

    Args:
        group (list): Process group.
72 73
        shape (list): The tensor shape.
        is_bool (bool): Whether allgather bool data. Default: False.
C
caozhou 已提交
74 75
    """

76
    def __init__(self, group, shape, is_bool=False):
C
caozhou 已提交
77 78
        self._group = group
        self._desc = "all_gather"
79 80 81 82 83 84
        self._shape = shape
        self._is_bool = is_bool

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
85 86 87 88 89 90 91 92 93

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

94 95 96 97
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
98
    def __repr__(self):
99
        return f"op: {self._desc}, group: {self._group}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
100 101


102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
class AllGatherConcatOpDesc:
    """
    Describe the c_concat op in the reshard phase.

    Args:
        group (list): Process group.
        shape (list): The tensor shape.
        is_bool (bool): Whether c_concat bool data. Default: False.
    """

    def __init__(self, group, shape, is_bool=False):
        self._group = group
        self._desc = "c_concat"
        self._shape = shape
        self._is_bool = is_bool

    @property
    def is_bool(self):
        return self._is_bool

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

    @property
    def shape(self):
        return self._shape

    def __repr__(self):
        return f"op: {self._desc}, group: {self._group}, shape: {self._shape}, is_bool: {self._is_bool}."


C
caozhou 已提交
138 139 140 141 142 143
class SendOpDesc:
    """
    Describe the send op in the reshard phase.

    Args:
        partition_index (list): The index of partition in complete tensor.
144
        src (int): The source process to send.
C
caozhou 已提交
145
        dst (int): The destination process to receive.
146
        is_bool (bool): Whether send bool data. Default: False.
C
caozhou 已提交
147 148
    """

149
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
150 151 152
        self._dst = dst
        self._partition_index = partition_index
        self._desc = "send"
153 154 155 156 157 158 159 160 161 162 163
        self._shape = []
        self._is_bool = is_bool
        self._src = src

    @property
    def src(self):
        return self._src

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def dst(self):
        return self._dst

    @property
    def desc(self):
        return self._desc

177 178 179 180 181 182 183
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
184
    def __repr__(self):
185
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
186 187 188 189 190 191 192 193 194


class RecvOpDesc:
    """
    Describe the recv op in the reshard op.

    Args:
        partition_index (list): The index of partition in complete tensor.
        src (int): The source process to send.
195 196
        dst (int): The destination process to receive.
        is_bool (bool): Whether receive bool data. Default: False.
C
caozhou 已提交
197 198
    """

199
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
200 201 202
        self._src = src
        self._partition_index = partition_index
        self._desc = "recv"
203 204 205 206 207 208 209 210 211 212 213
        self._shape = []
        self._is_bool = is_bool
        self._dst = dst

    @property
    def dst(self):
        return self._dst

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def src(self):
        return self._src

    @property
    def desc(self):
        return self._desc

227 228 229 230 231 232 233
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
234
    def __repr__(self):
235
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
236 237 238 239 240 241 242


class SliceOpDesc:
    """
    Describe the slice op in the reshard phase.

    Args:
243 244 245 246
        starts (list): It represents start indices of corresponding axis in ``axes``.
        ends (list):  It represents end indices of corresponding axis in ``axes``.
        axes (list):  Axes that `starts` and `ends` apply to.
        shape (list): The shape of the tensor to be sliced.
C
caozhou 已提交
247 248
    """

249
    def __init__(self, starts, ends, axes, shape=None):
C
caozhou 已提交
250 251 252 253
        self._starts = starts
        self._ends = ends
        self._axes = axes
        self._desc = "slice"
254
        self._shape = shape
C
caozhou 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

    @property
    def starts(self):
        return self._starts

    @property
    def ends(self):
        return self._ends

    @property
    def axes(self):
        return self._axes

    @property
    def desc(self):
        return self._desc

272 273 274 275
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
276
    def __repr__(self):
277 278 279 280
        if self._shape is not None:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}, shape: {self._shape}."
        else:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}."
C
caozhou 已提交
281 282 283 284 285 286 287


class ConcatOpDesc:
    """
    Describe the concat op in the reshard phase.

    Args:
288
        partition_index_list (list): The list contains all partition index.
C
caozhou 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    """

    def __init__(self, partition_index_list):
        self._partition_index_list = partition_index_list
        self._desc = "concat"

    @property
    def partition_index_list(self):
        return self._partition_index_list

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index_list: {self._partition_index_list}."


307 308
class Inserter:
    """Insert op required in the reshard process."""
C
caozhou 已提交
309

310
    @staticmethod
311 312 313
    def insert_cast_op(block, idx, tensor, op_role, tensor_type):
        # to avoid name conflict with framework
        new_var_name = paddle.fluid.unique_name.generate_with_ignorable_key(
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
            ".".join(["cast@RESHARD", 'tmp'])
        )
        out = block.create_var(
            name=new_var_name,
            dtype=tensor_type,
            type=tensor.type,
            lod_level=tensor.lod_level,
        )
        cast_op = block._insert_op(
            idx,
            type='cast',
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
                'in_dtype': tensor.dtype,
                'out_dtype': out.dtype,
                'op_role': op_role,
            },
        )
333
        cast_op._set_attr('op_namescope', "/auto_parallel/reshard")
334 335 336 337
        return out

    @staticmethod
    def insert_send_op(block, idx, tensor, src, dst, op_role):
338 339
        """Insert send op into block at the given index."""
        op_type = 'send_v2'
340 341
        # use pair comm group
        process_group = new_process_group([src, dst])
342 343 344 345 346 347 348 349 350 351 352 353
        send_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(dst),
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': True,
            },
        )
354
        send_op._set_attr('op_namescope', "/auto_parallel/reshard")
355 356

    @staticmethod
357
    def insert_recv_op(block, idx, tensor, src, dst, op_role):
358 359
        """Insert recv op into block at the given index."""
        op_type = 'recv_v2'
360 361
        # use pair group
        process_group = new_process_group([src, dst])
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        recv_op = block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [tensor]},
            attrs={
                'ring_id': process_group.id,
                'peer': process_group.ranks.index(src),
                'out_shape': tensor.shape,
                'dtype': tensor.dtype,
                'use_calc_stream': True,
                'op_role': op_role,
                'dynamic_shape': True,
            },
        )
377
        recv_op._set_attr('op_namescope', "/auto_parallel/reshard")
378

379 380 381 382 383
    @staticmethod
    def insert_reset_lod_op(block, idx, X, Y, op_role):
        """Insert reset_lod op into block at the given index."""

        new_var_name = paddle.fluid.unique_name.generate_with_ignorable_key(
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            ".".join(["reset_lod@RESHARD", 'tmp'])
        )
        reset_lod_out = block.create_var(
            name=new_var_name,
            shape=X.shape,
            type=X.type,
            dtype=X.dtype,
            lod_level=X.lod_level,
        )

        reset_op = block._insert_op(
            idx,
            type="lod_reset",
            inputs={'X': X, 'Y': Y},
            outputs={'Out': reset_lod_out},
            attrs={'op_role': op_role},
        )
401
        reset_op._set_attr('op_namescope', "/auto_parallel/reshard")
402 403
        return reset_lod_out

404 405 406 407 408 409 410
    @staticmethod
    def insert_concat_op(block, idx, tensors, axis, op_role):
        """Insert concat op into block at the given block."""
        inputs = {'X': tensors}
        attrs = {}
        attrs['axis'] = axis
        attrs['op_role'] = op_role
411 412
        # to avoid name conflict with framework
        helper = LayerHelper('concat@RESHARD', **locals())
413
        with paddle.static.program_guard(block.program):
414 415
            out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
416 417
                    ".".join([helper.name, 'tmp'])
                ),
418 419 420 421 422
                dtype=tensors[0].dtype,
                shape=None,
                lod_level=tensors[0].lod_level,
                type=tensors[0].type,
                persistable=False,
423 424 425 426 427 428 429 430 431
                stop_gradient=False,
            )
        concat_op = block._insert_op(
            idx,
            type='concat',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
432
        concat_op._set_attr('op_namescope', "/auto_parallel/reshard")
433
        return out
C
caozhou 已提交
434

435
    @staticmethod
436 437 438
    def insert_slice_op(
        block, idx, tensor, starts, ends, axes, new_var_name, op_role
    ):
439
        """Insert slice op into block at the given block."""
440 441 442 443 444 445 446 447 448 449 450 451 452
        # This is a hack to insert split op to get slice tensor
        # 1. [128, 128] => [64, 128]: split
        # 2. [128, 128] => [128, 128]: assign
        # 3. [128, 128] => [64, 64]: slice, it will replaced by multi split
        global_shape = tensor.shape
        slice_shape = [ends[i] - starts[i] for i in range(len(starts))]
        diff_dims = []
        for index, item in enumerate(slice_shape):
            if item != global_shape[index]:
                diff_dims.append(index)

        # use assign
        if len(diff_dims) == 0:
453 454 455 456 457 458 459
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                shape=slice_shape,
                lod_level=tensor.lod_level,
            )
460 461 462
            inputs = {'X': [tensor]}
            outputs = {"Out": [out]}
            attrs = {"in_place": False}
463 464 465
            slice_op = block._insert_op(
                idx, type="assign", inputs=inputs, outputs=outputs, attrs=attrs
            )
466
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            return out

        # use split once
        elif len(diff_dims) == 1:
            diff_dim = diff_dims[0]
            num_or_sections = global_shape[diff_dim] // slice_shape[diff_dim]
            axis = diff_dim
            cur_idx = starts[diff_dim] // slice_shape[diff_dim]
            input_shape = global_shape
            inputs = {'X': tensor}
            attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
            new_shape = []
            for index, item in enumerate(tensor.shape):
                if index != axis:
                    new_shape.append(item)
                else:
                    new_shape.append(item // num_or_sections)
            with paddle.static.program_guard(block.program):
                outs = [
486 487 488 489 490 491 492 493 494 495 496
                    block.create_var(
                        name=paddle.fluid.unique_name.generate_with_ignorable_key(
                            ".".join(['split@RESHARD', 'tmp'])
                        ),
                        dtype=tensor.dtype,
                        shape=None,
                        type=tensor.type,
                        persistable=False,
                        lod_level=tensor.lod_level,
                        stop_gradient=False,
                    )
497 498 499
                    for i in range(num_or_sections)
                ]
                out = outs[cur_idx]
500 501 502 503 504 505 506
            split_op = block._insert_op(
                idx,
                type="split",
                inputs=inputs,
                outputs={'Out': outs},
                attrs=attrs,
            )
507
            split_op._set_attr('op_namescope', "/auto_parallel/reshard")
508 509 510 511 512 513 514 515 516 517 518
            return out

        # use slice
        else:
            inputs = {'Input': tensor}
            infer_flags = list(1 for i in range(len(axes)))
            attrs = {
                "axes": axes,
                "starts": starts,
                "ends": ends,
                "infer_flags": infer_flags,
519
                'op_role': op_role,
520
            }
521 522 523 524 525 526 527 528 529 530 531 532 533
            out = block.create_var(
                name=new_var_name,
                dtype=tensor.dtype,
                type=tensor.type,
                lod_level=tensor.lod_level,
            )
            slice_op = block._insert_op(
                idx,
                type="slice",
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
534
            slice_op._set_attr('op_namescope', "/auto_parallel/reshard")
535
            return out
C
caozhou 已提交
536

537
    @staticmethod
538
    def insert_split_op(block, idx, tensor, num_or_sections, op_role, axis=0):
539
        """Insert split op into block at the given index."""
540
        helper = LayerHelper('split@RESHARD', **locals())
541 542
        input_shape = tensor.shape
        inputs = {'X': tensor}
543 544 545 546 547 548 549
        attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
        new_shape = []
        for index, item in enumerate(tensor.shape):
            if index != axis:
                new_shape.append(item)
            else:
                new_shape.append(item // num_or_sections)
550 551
        with paddle.static.program_guard(block.program):
            outs = [
552 553
                block.create_var(
                    name=paddle.fluid.unique_name.generate_with_ignorable_key(
554 555
                        ".".join([helper.name, 'tmp'])
                    ),
556 557 558 559 560
                    dtype=tensor.dtype,
                    shape=None,
                    lod_level=tensor.lod_level,
                    type=tensor.type,
                    persistable=False,
561 562 563
                    stop_gradient=False,
                )
                for i in range(num_or_sections)
564
            ]
565 566 567
        split_op = block._insert_op(
            idx, type="split", inputs=inputs, outputs={'Out': outs}, attrs=attrs
        )
568
        split_op._set_attr('op_namescope', "/auto_parallel/reshard")
569
        return outs
C
caozhou 已提交
570

571 572
    @staticmethod
    def insert_fill_constant_op(block, idx, op_role):
C
caozhou 已提交
573
        """Insert fill constant op into block at the given index."""
574 575 576
        # to avoid name conflict with framework
        helper = LayerHelper('fill_constant@RESHARD', **locals())
        # use paddle.int64 as dtype
C
caozhou 已提交
577
        with paddle.static.program_guard(block.program):
578 579
            out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
580 581
                    ".".join([helper.name, 'tmp'])
                ),
582 583 584 585
                dtype=paddle.int64,
                shape=None,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
586 587
                stop_gradient=False,
            )
C
caozhou 已提交
588 589 590 591 592
        inputs = {}
        attrs = {'force_cpu': False}
        attrs['str_value'] = str(int("1"))
        attrs['value'] = int("1")
        attrs['dtype'] = out.dtype
593
        attrs['op_role'] = op_role
594 595 596 597 598 599 600 601 602 603
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=[0], op_type='fill_constant'
        )
        fillconstant_op = block._insert_op(
            idx,
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
        )
C
caozhou 已提交
604
        out.stop_gradient = True
605
        fillconstant_op._set_attr('op_namescope', "/auto_parallel/reshard")
C
caozhou 已提交
606 607
        return out

608 609 610 611 612 613 614 615 616 617
    @staticmethod
    def insert_allgather_op(block, idx, tensor, ranks, op_role):
        """Insert allgather op into block at the given index."""
        tensor_list = []
        group = new_process_group(ranks)
        idx_offset = 0

        # instant process group before insert allgather op.
        if not group.is_instantiate():
            # insert fill_constant op
618
            fill_constant_out = Inserter.insert_fill_constant_op(
619 620
                block, idx, op_role
            )
621 622 623
            fill_constant_out.stop_gradient = True

            # insert c_allreduce_sum op
624 625 626 627 628 629 630 631
            allreduce_op = block._insert_op(
                idx + 1,
                type="c_allreduce_sum",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
                attrs={
                    'ring_id': 0,
                    'use_calc_stream': True,
632 633 634
                    'op_role': op_role,
                },
            )
635
            allreduce_op._set_attr('op_namescope', "/auto_parallel/reshard")
636
            # insert c_sync_calc_stream op
637 638 639 640 641
            sync_calc_op = block._insert_op(
                idx + 2,
                type="c_sync_calc_stream",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
642 643
                attrs={'op_role': op_role},
            )
644
            sync_calc_op._set_attr('op_namescope', "/auto_parallel/reshard")
645 646 647 648
            idx_offset = 3

        # insert c_allgather op
        op_type = 'c_allgather'
649 650
        # to avoid name conflict with framework
        helper = LayerHelper(op_type + "@RESHARD", **locals())
651
        with paddle.static.program_guard(block.program):
652 653
            allgather_out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
654 655
                    ".".join([helper.name, 'tmp'])
                ),
656 657 658 659 660
                dtype=tensor.dtype,
                shape=None,
                lod_level=tensor.lod_level,
                type=tensor.type,
                persistable=False,
661 662 663 664 665 666 667 668 669 670 671 672 673 674
                stop_gradient=False,
            )
        allgather_op = block._insert_op(
            idx + idx_offset,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [allgather_out]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'nranks': group.nranks,
                'op_role': op_role,
            },
        )
675
        allgather_op._set_attr('op_namescope', "/auto_parallel/reshard")
676 677 678
        idx_offset += 1

        # insert split op
679 680 681
        split_out = Inserter.insert_split_op(
            block, idx + idx_offset, allgather_out, group.nranks, op_role
        )
682 683 684 685
        idx_offset += 1
        tensor_list.extend(split_out)
        return tensor_list, idx_offset

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
    @staticmethod
    def insert_c_concat_op(block, idx, tensor, ranks, op_role):
        """Insert c_concat op into block at the given index."""
        group = new_process_group(ranks)
        idx_offset = 0

        # insert c_concat op
        op_type = 'c_concat'
        # to avoid name conflict with framework
        helper = LayerHelper(op_type + "@RESHARD", **locals())
        with paddle.static.program_guard(block.program):
            c_concat_out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
                    ".".join([helper.name, 'tmp'])
                ),
                dtype=tensor.dtype,
                shape=None,
                lod_level=tensor.lod_level,
                type=tensor.type,
                persistable=False,
                stop_gradient=False,
            )
        cur_rank = paddle.distributed.get_rank()
        c_concat_op = block._insert_op(
            idx + idx_offset,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [c_concat_out]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                'nranks': group.nranks,
                'op_role': op_role,
                'rank': group.ranks.index(cur_rank) if cur_rank in ranks else 0,
            },
        )
        c_concat_op._set_attr('op_namescope', "/auto_parallel/reshard")
        return c_concat_out

726
    @staticmethod
727 728 729
    def concat_partitions_with_op(
        partition_tensor_list, tensor, partition_index, block, idx, op_role
    ):
730 731
        """Concat the tensors and insert concat op."""
        if not partition_tensor_list:
C
caozhou 已提交
732
            partition_tensor_list.append((tensor, partition_index))
733 734 735 736
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
737 738 739 740 741 742 743
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i][1], partition_index
                )
744 745
                if concat_axis != -1:
                    has_concat = True
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
                    _ = (
                        Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [partition_tensor_list[i][0], tensor],
                            concat_axis,
                            op_role,
                        )
                        if first_order == 0
                        else Inserter.insert_concat_op(
                            block,
                            idx[0],
                            [tensor, partition_tensor_list[i][0]],
                            concat_axis,
                            op_role,
                        )
                    )
763 764
                    partition_tensor_list.pop(i)
                    idx[0] += 1
765 766 767 768 769 770 771 772
                    Inserter.concat_partitions_with_op(
                        partition_tensor_list,
                        _,
                        new_partition,
                        block,
                        idx,
                        op_role,
                    )
773 774 775 776 777 778 779 780 781 782 783 784 785
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append((tensor, partition_index))


class Remover:
    """Remove var and op in the reshard process."""

    @staticmethod
    def remove_no_need_ops(auto_parallel_main_prog, dist_context, rank_id):
        """Remove no need ops in the main program"""
        not_remove_op_ref = [
786 787 788
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
789
        ]
C
caozhou 已提交
790

791 792 793 794
        # NOTE: The nested sub block is not be supported now.
        remove_block_order = []
        for block_idx in Resharder.while_block_info:
            remove_block_order.append(block_idx)
C
caozhou 已提交
795

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            if block_idx not in remove_block_order:
                remove_block_order.append(block_idx)

        # the sub block should be removed first
        for block_idx in remove_block_order:
            remove_op_idx = []
            block = auto_parallel_main_prog.blocks[block_idx]
            ops = block.ops
            vars = block.vars
            for idx, op in enumerate(ops):
                if op.type == "read":
                    dim_list = []
                    for var_name in op.output_arg_names:
                        dim_list.extend(
                            get_var_with_recursion(
812 813 814
                                var_name, block, auto_parallel_main_prog
                            ).shape
                        )
815 816 817 818 819
                    for i in range(idx, -1, -1):
                        if ops[i].type == "create_py_reader":
                            ops[i]._set_attr("shape_concat", dim_list)
                            break
                    continue
820

821 822 823 824
                # replace the input and output of c_sync_comm_stream op when in pipeline scene.
                if op.type == "c_sync_comm_stream":
                    need_save = []
                    for var_name in op.input_arg_names:
825 826 827 828 829 830 831
                        process_mesh = (
                            dist_context.get_tensor_dist_attr_for_program(
                                get_var_with_recursion(
                                    var_name, block, auto_parallel_main_prog
                                )
                            ).process_mesh
                        )
832
                        if rank_id in process_mesh.process_ids:
833 834 835 836
                            need_save.append(var_name)
                    if not need_save:
                        remove_op_idx.append(idx)
                        continue
837

838 839 840 841
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, need_save)
                    op.desc.set_output(proto.outputs[0].name, need_save)
                    continue
842

843 844 845 846
                # judge the other op whether should be removed.
                op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
                if op_dist_attr is not None:
                    op_process_mesh = op_dist_attr.process_mesh
847
                    if (
848
                        rank_id not in op_process_mesh.process_ids
849 850
                        and op.type not in not_remove_op_ref
                    ):
851 852 853 854 855 856
                        remove_op_idx.append(idx)

            for idx in remove_op_idx[::-1]:
                block._remove_op(idx)

    @staticmethod
857 858 859
    def remove_no_need_vars(
        auto_parallel_main_prog, dist_params_grads, feed_var_names
    ):
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
        """Remove no need vars in the main program"""
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            remove_vars = set()
            ops = block.ops
            vars = block.vars
            need_vars = set()
            for op in ops:
                for var_name in op.input_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
                for var_name in op.output_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
            for var in vars:
                if var not in need_vars:
                    remove_vars.add(var)

            # change dist_params_grads, the optimize op just in block 0.
            if block_idx == 0:
                param_grad_map = {}
                for op in ops:
                    if int(op.attr('op_role')) == int(OpRole.Optimize):
882 883 884 885
                        if (
                            "Param" in op.input_names
                            and "Grad" in op.input_names
                        ):
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
                            param_name = op.input("Param")[0]
                            grad_name = op.input("Grad")[0]
                            param_grad_map[param_name] = grad_name

                need_remove_idx = []
                for idx, item in enumerate(dist_params_grads):
                    if item[0].name not in param_grad_map.keys():
                        need_remove_idx.append(idx)

                for idx in need_remove_idx[::-1]:
                    dist_params_grads.pop(idx)

                idx = 0
                while idx < len(dist_params_grads):
                    param_name = dist_params_grads[idx][0].name
                    grad_name = dist_params_grads[idx][1].name
                    if grad_name != param_grad_map[param_name]:
                        dist_params_grads[idx] = (
904 905 906
                            vars[param_name],
                            vars[param_grad_map[param_name]],
                        )
907 908 909
                    idx += 1

            for var in remove_vars:
910
                if var in feed_var_names:
911
                    continue
912 913 914
                block._remove_var(var)

    @staticmethod
915 916 917
    def remove_no_need_in_main(
        auto_parallel_main_prog, dist_context, rank_id, dist_params_grads
    ):
918
        """Remove no need vars and ops in the main program."""
919 920 921 922 923 924
        Remover.remove_no_need_ops(
            auto_parallel_main_prog, dist_context, rank_id
        )
        Resharder.change_while_op_input_and_output(
            auto_parallel_main_prog, dist_context
        )
925 926 927 928
        # 'feed_var_names' cannot be removed from auto_parallel_main_prog
        feed_var_names = []
        for var in sum(list(dist_context.serial_feed_vars.values()), []):
            feed_var_names.append(var.name)
929 930 931
        Remover.remove_no_need_vars(
            auto_parallel_main_prog, dist_params_grads, feed_var_names
        )
932 933

    @staticmethod
934 935 936
    def remove_no_need_in_startup(
        auto_parallel_main_prog, auto_parallel_startup_prog
    ):
937 938 939 940 941 942
        """Remove no need vars and ops in the startup program."""
        main_input_vars = set()
        main_ops = auto_parallel_main_prog.global_block().ops
        for op in main_ops:
            for var_name in op.input_arg_names:
                main_input_vars.add(var_name)
943

944 945 946 947 948 949 950 951 952
        startup_block = auto_parallel_startup_prog.global_block()
        startup_output_vars = set()
        startup_ops = startup_block.ops
        for op in startup_ops:
            # skip c_sync_comm_stream op
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                startup_output_vars.add(var_name)
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        need_vars = set()
        for var_name in startup_output_vars:
            if var_name in main_input_vars:
                need_vars.add(var_name)

        startup_ops = startup_block.ops
        actual_need_vars = set()
        for idx, op in enumerate(startup_ops):
            is_need_op = False
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                if var_name in need_vars:
                    is_need_op = True
                    break
            if is_need_op:
                for var_name in op.output_arg_names:
                    actual_need_vars.add(var_name)
                for var_name in op.input_arg_names:
                    actual_need_vars.add(var_name)
974

975 976 977 978 979 980
        remove_vars = set()
        for var_name in startup_block.vars:
            if var_name not in actual_need_vars:
                remove_vars.add(var_name)
        for var in remove_vars:
            startup_block._remove_var(var)
981 982

        remove_op_idx = []
983 984 985
        vars = startup_block.vars
        for idx, op in enumerate(startup_block.ops):
            is_no_need_op = False
986
            if op.type == "c_sync_comm_stream":
987
                var_names = []
988
                for var_name in op.input_arg_names:
989 990 991
                    if var_name in vars:
                        var_names.append(var_name)
                if not var_names:
992
                    remove_op_idx.append(idx)
993 994 995 996
                else:
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, var_names)
                    op.desc.set_output(proto.outputs[0].name, var_names)
997
                continue
C
caozhou 已提交
998

999 1000 1001 1002 1003 1004
            for var_name in op.output_arg_names:
                if var_name not in vars:
                    is_no_need_op = True
                    break
            if is_no_need_op:
                remove_op_idx.append(idx)
1005
        for idx in remove_op_idx[::-1]:
1006
            startup_block._remove_op(idx)
C
caozhou 已提交
1007 1008


1009 1010 1011
class Resharder:
    """
    Reshard tensor in the program according to its distributed attribute and corresponding op distributed attribute.
1012

1013 1014 1015 1016 1017 1018 1019 1020
    Args:
        auto_parallel_main_prog (Program): An auto parallel main program.
        auto_parallel_startup_prog (Program): An auto parallel startup program.
        rank_id (int): The process id.
        dist_context (DistributedContext): The distributed context of this rank.
        dist_params_grads (list): The list contains the tuple of param and grad.
        batch_size (int): The batch size. Default: None.
    """
1021

1022 1023
    while_block_info = {}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    def __init__(
        self,
        auto_parallel_main_prog,
        auto_parallel_startup_prog,
        rank_id,
        dist_context,
        dist_params_grads,
        batch_size=None,
    ):
        assert isinstance(auto_parallel_main_prog, Program), (
            "The type of auto_parallel_main_prog should be Program, "
            "but got {}.".format(type(auto_parallel_main_prog))
        )
1037
        if auto_parallel_startup_prog is not None:
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
            assert isinstance(auto_parallel_main_prog, Program), (
                "The type of auto_parallel_startup_prog should be Program or None, "
                "but got {}.".format(type(auto_parallel_startup_prog))
            )
        assert isinstance(
            rank_id, int
        ), "The type of rank_id should be int, " "but got {}.".format(
            type(rank_id)
        )
        assert isinstance(dist_context, DistributedContext), (
            "The type of dist_context should be DistributedContext, "
            "but got {}.".format(type(dist_context))
        )
1051

1052
        if batch_size is not None:
1053 1054 1055 1056 1057
            assert isinstance(
                batch_size, int
            ), "The type of batch_size should be int, " "but got {}.".format(
                type(batch_size)
            )
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

        self._auto_parallel_main_prog = auto_parallel_main_prog
        self._auto_parallel_startup_prog = auto_parallel_startup_prog
        self._rank_id = rank_id
        self._dist_context = dist_context
        self._dist_params_grads = dist_params_grads
        self._batch_size = batch_size
        self._has_sent = {}
        self._has_recv = {}
        self._has_allgather = {}
1068 1069
        # to avoid reshard repeatly
        self._has_resharded = {}
1070

1071 1072 1073
    @property
    def auto_parallel_main_prog(self):
        return self._auto_parallel_main_prog
1074

1075 1076 1077
    @property
    def auto_parallel_startup_prog(self):
        return self._auto_parallel_startup_prog
1078

1079 1080 1081
    @property
    def rank_id(self):
        return self._rank_id
1082

1083 1084 1085
    @property
    def dist_context(self):
        return self._dist_context
1086

1087 1088 1089
    @property
    def dist_params_grads(self):
        return self._dist_params_grads
1090

1091 1092 1093
    @property
    def batch_size(self):
        return self._batch_size
1094

1095 1096 1097
    @property
    def has_sent(self):
        return self._has_sent
1098

1099 1100 1101
    @property
    def has_recv(self):
        return self._has_recv
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    @property
    def has_allgather(self):
        return self._has_allgather

    @staticmethod
    def compute_partition_shape(complete_shape, dims_mapping, process_shape):
        """Compute the shape of partition."""
        partition_shape = []
        for idx, item in enumerate(complete_shape):
            if dims_mapping[idx] == -1:
                partition_shape.append(item)
            else:
                partition_shape.append(item // process_shape[dims_mapping[idx]])
1116

1117
        return partition_shape
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    @staticmethod
    def compute_process_index(process, process_group, process_shape):
        """Compute the index of process_shape corresponding to the process."""
        relative_process = process_group.index(process)
        process_index = []
        product = reduce(lambda x, y: x * y, process_shape)

        for i in range(len(process_shape)):
            idx = relative_process // (product // process_shape[i])
            product = product // process_shape[i]
1129 1130 1131
            relative_process = (
                relative_process - relative_process // product * product
            )
1132 1133 1134 1135 1136
            process_index.append(idx)

        return process_index

    @staticmethod
1137 1138 1139
    def compute_partition_index(
        process, complete_shape, dims_mapping, process_shape, process_group
    ):
1140 1141
        """Compute the partition index in complete tensor."""
        partition_shape = Resharder.compute_partition_shape(
1142 1143 1144 1145 1146
            complete_shape, dims_mapping, process_shape
        )
        process_index = Resharder.compute_process_index(
            process, process_group, process_shape
        )
1147 1148 1149 1150 1151 1152
        partition_index = []

        for i in range(len(complete_shape)):
            if dims_mapping[i] == -1:
                partition_index.append([0, partition_shape[i]])
            else:
1153 1154 1155 1156 1157 1158 1159
                partition_index.append(
                    [
                        process_index[dims_mapping[i]] * partition_shape[i],
                        (process_index[dims_mapping[i]] + 1)
                        * partition_shape[i],
                    ]
                )
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

        return partition_index

    @staticmethod
    def compute_concat_info(partition_index_x, partition_index_y):
        """Judge whether two partition can be concatenated and compute concatenated partition index."""
        differ_count = 0
        concat_axis = -1
        first_order = 0
        new_partition = []

        for idx, item in enumerate(partition_index_x):
            if item != partition_index_y[idx]:
                differ_count += 1
1174 1175 1176 1177
                if (
                    item[1] == partition_index_y[idx][0]
                    and item[0] < partition_index_y[idx][1]
                ):
1178 1179
                    concat_axis = idx
                    new_partition.append([item[0], partition_index_y[idx][1]])
1180 1181 1182 1183
                elif (
                    item[0] == partition_index_y[idx][1]
                    and item[1] > partition_index_y[idx][0]
                ):
1184 1185 1186 1187 1188
                    first_order = 1
                    concat_axis = idx
                    new_partition.append([partition_index_y[idx][0], item[1]])
            else:
                new_partition.append(item)
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        if differ_count == 1:
            return concat_axis, first_order, new_partition
        else:
            return -1, first_order, new_partition

    @staticmethod
    def compute_complete_shape(slice_shape, process_shape, dims_mapping):
        """compute the complete shape of the slice tensor  with its process mesh and dims mapping"""
        complete_shape = []
        for idx, item in enumerate(slice_shape):
            if dims_mapping[idx] == -1:
                complete_shape.append(item)
            else:
                complete_shape.append(item * process_shape[dims_mapping[idx]])
        return complete_shape
C
caozhou 已提交
1205

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    @staticmethod
    def concat_partitions(partition_index_list, partition_index):
        """Concat the given partitions without inserting concat op."""
        if not partition_index_list:
            partition_index_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_index_list):
                concat_axis, _, new_partition = Resharder.compute_concat_info(
1216 1217
                    partition_index_list[i], partition_index
                )
1218 1219 1220
                if concat_axis != -1:
                    has_concat = True
                    partition_index_list.pop(i)
1221 1222 1223
                    Resharder.concat_partitions(
                        partition_index_list, new_partition
                    )
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
                    break
                i += 1
            if not has_concat:
                partition_index_list.append(partition_index)

    @staticmethod
    def change_while_op_input_and_output(auto_parallel_main_prog, dist_context):
        """Change while op input and output after the corresponding sub block ops removed"""
        for sub_block_idx in Resharder.while_block_info:
            sub_block = auto_parallel_main_prog.blocks[sub_block_idx]
            parent_while_op_id = Resharder.while_block_info[sub_block_idx][
1235 1236
                "op_id"
            ]
1237 1238 1239 1240 1241 1242 1243
            parent_block = auto_parallel_main_prog.blocks[sub_block.parent_idx]

            sub_block_op_inputs = set()
            sub_block_op_outputs = []
            for op in sub_block.ops:
                # skip the input and output of operators inserted in the reshard phase
                dist_op = dist_context.get_dist_op_for_program(op)
1244 1245 1246 1247 1248 1249
                if (
                    dist_op
                    or (op.type == "slice" and not dist_op)
                    or (op.type == "split" and not dist_op)
                    or (op.type == "assign" and not dist_op)
                ):
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
                    for var_name in op.output_arg_names:
                        if var_name not in sub_block_op_outputs:
                            sub_block_op_outputs.append(var_name)
                    for var_name in op.input_arg_names:
                        sub_block_op_inputs.add(var_name)

            # find the while op
            while_op = None
            for op in parent_block.ops:
                if op.desc.id() == parent_while_op_id and op.type == "while":
                    while_op = op
                    break

1263 1264
            if while_op is None:
                continue
1265 1266 1267 1268 1269 1270 1271 1272

            # find the actual input and output of while op
            proto = OpProtoHolder.instance().get_op_proto(while_op.type)
            new_X = []
            for var_name in while_op.input("X"):
                if var_name in sub_block_op_inputs:
                    new_X.append(var_name)
            assert new_X
1273
            new_X.sort()
1274 1275 1276 1277 1278
            while_op.desc.set_input(proto.inputs[0].name, new_X)

            new_Out = []
            for var_name in while_op.output("Out"):
                for output_name in sub_block_op_outputs[::-1]:
1279
                    if output_name.find(var_name) != -1 and (
1280 1281 1282
                        len(var_name) == len(output_name)
                        or "@RESHARD" in output_name
                    ):
1283 1284
                        if output_name not in new_Out:
                            new_Out.append(output_name)
1285 1286 1287 1288 1289 1290
            assert new_Out
            while_op.desc.set_output(proto.outputs[0].name, new_Out)

    def is_overlapped(self, shape_x, shape_y):
        """Judge whether two partitions intersect on the specified dimension."""
        overlapped = False
1291 1292 1293
        if (shape_y[0] <= shape_x[0] < shape_y[1]) or (
            shape_x[0] <= shape_y[0] < shape_x[1]
        ):
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
            overlapped = True
        return overlapped

    def is_unshard(self, dims_mapping):
        for dim in dims_mapping:
            if dim != -1:
                return False
        return True

    def is_special_op(self, op):
1304
        global _g_special_ops, _g_gradient_clip_ops
Z
zhaoyingli 已提交
1305 1306
        if op.type in _g_special_ops:
            return True
1307
        if is_gradient_clip_op(op) and op.type in _g_gradient_clip_ops:
1308
            return True
Z
zhaoyingli 已提交
1309 1310
        return False

1311 1312
    def is_condition_replicative(self, op):
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
1313 1314 1315 1316 1317

        if op.type == "while":
            input_cond = op.input("Condition")
        elif op.type == "conditional_block":
            input_cond = op.input("Cond")
1318 1319

        # the dims mapping of condition tensor should be replicative
1320
        for var_name in input_cond:
1321 1322 1323
            var = get_var_with_recursion(
                var_name, sub_block, self.auto_parallel_main_prog
            )
1324 1325 1326 1327 1328 1329
            dist_tensor = self.dist_context.get_dist_tensor_for_program(var)
            tensor_dist_attr = dist_tensor.dist_attr
            var_dims_mapping = tensor_dist_attr.dims_mapping
            for dim in var_dims_mapping:
                if dim != -1:
                    return False
1330

1331 1332
        return True

1333
    def need_reshard(self, dist_tensor, dist_attr, op_input=True, dist_op=None):
1334 1335 1336 1337 1338
        """Judge the tensor whether needs to be resharded."""
        is_reshard = False
        tensor_dist_attr = dist_tensor.dist_attr
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        tensor_process_mesh = tensor_dist_attr.process_mesh
1339 1340 1341 1342

        # dist_attr is [process_mesh, dims_mapping] and process_mesh is not a union
        op_process_mesh = dist_attr[0]

1343
        if op_input:
1344
            op_input_dims_mapping = dist_attr[1]
1345
            if all(
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
                map(
                    lambda x: x,
                    [
                        tensor_dims_mapping,
                        tensor_process_mesh,
                        op_input_dims_mapping,
                        op_process_mesh,
                    ],
                )
            ):
1356
                # judge whether need reshard by dims_mapping
1357
                if tensor_dims_mapping != op_input_dims_mapping:
1358 1359 1360 1361
                    if (
                        tensor_process_mesh
                        not in self.dist_context.process_meshes
                    ):
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
                        # assert whether -1 when union.
                        for item in tensor_dims_mapping:
                            if item != -1:
                                raise ValueError(
                                    "The dim must be -1 when tensor process mesh is a union."
                                )
                        # tensor process_mesh: [0, 1, 2, 3], dims_mapping: [-1, -1]
                        # op process_mesh: [4, 5], dims_mapping: [0, -1]
                        # reshard is not supported such as above
                        if not is_reshard:
                            return is_reshard
1373
                        else:
1374 1375 1376 1377 1378 1379 1380 1381
                            raise ValueError(
                                "it is not supported that tensor process mesh is a union and needs reshard."
                            )
                    is_reshard = True

                # judge whether need reshard by process_mesh
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1382
        else:
1383
            op_output_dims_mapping = dist_attr[1]
1384
            if all(
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
                map(
                    lambda x: x,
                    [
                        tensor_dims_mapping,
                        tensor_process_mesh,
                        op_output_dims_mapping,
                        op_process_mesh,
                    ],
                )
            ):
1395 1396 1397 1398
                if tensor_dims_mapping != op_output_dims_mapping:
                    raise ValueError(
                        "It is not supported that tensor dims mapping is different from op output dims mapping."
                    )
1399 1400
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1401 1402 1403 1404

        return is_reshard

    def get_op_process_meshes(self, op):
1405
        """Get sub process meshes of the given op if op process mesh is a union."""
1406 1407 1408
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        op_process_mesh = dist_op.dist_attr.process_mesh
1409

1410
        for process_mesh in self.dist_context.process_meshes:
1411 1412 1413 1414 1415
            if set(process_mesh.process_ids) & (
                set(op_process_mesh.process_ids)
            ) and len(process_mesh.process_ids) < len(
                op_process_mesh.process_ids
            ):
1416 1417 1418 1419 1420 1421 1422 1423
                process_meshes.append(process_mesh)

        # it means the process mesh is not a union when process meshes is null
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        return process_meshes

1424
    def find_op_desc_seq(self, dist_tensor, dist_attr, serial=False):
1425 1426 1427 1428 1429
        """
        Find the op description sequence to reshard the source tensor for matching the op requirement.

        Args:
            dist_tensor (DistributedTensor): A distributed tensor.
1430 1431
            dist_attr (list): A list contains process_mesh and dims_mapping such as [process_mesh, dims_mapping].
            serial (bool): If serial is true, the dist tensor and dist op come from serial program. Otherwise, they come from auto program.
1432 1433 1434 1435 1436 1437 1438 1439

        Returns:
            Dict, the dict represents the required op description sequence corresponding to process, The key of dict is
            process and value is a list containing op description.
        """
        tensor_dist_attr = dist_tensor.dist_attr
        source_tensor = dist_tensor.serial_tensor
        tensor_name = source_tensor.name
1440

1441 1442
        source_dims_mapping = tensor_dist_attr.dims_mapping
        source_process_mesh = tensor_dist_attr.process_mesh
1443 1444
        source_process_group = source_process_mesh.process_ids
        source_process_shape = source_process_mesh.shape
1445

1446 1447
        target_process_mesh = dist_attr[0]
        target_dims_mapping = dist_attr[1]
1448 1449
        target_process_group = target_process_mesh.process_ids
        target_process_shape = target_process_mesh.shape
1450 1451

        if source_tensor.shape[0] < 0:
1452
            assert source_tensor.shape[0] == -1
1453 1454 1455 1456
            new_shape = list(source_tensor.shape)
            new_shape[0] = self.batch_size
            source_tensor.desc.set_shape(new_shape)

1457 1458 1459 1460 1461 1462 1463
        complete_shape = (
            Resharder.compute_complete_shape(
                source_tensor.shape, source_process_shape, source_dims_mapping
            )
            if not serial
            else source_tensor.shape
        )
1464 1465 1466
        op_desc_seq = {}

        # TODO: if the target process group has the same process with source process group
1467 1468 1469
        if set(target_process_group).intersection(
            set(source_process_group)
        ) and set(target_process_group).difference(set(source_process_group)):
1470 1471 1472 1473 1474
            pass

        elif target_process_group != source_process_group:
            partition_process_mapping_list = []
            for source_process in source_process_group:
1475
                # get partition index of source process
1476 1477 1478 1479 1480 1481 1482
                source_partition_index = Resharder.compute_partition_index(
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1483
                if not partition_process_mapping_list:
1484
                    # the item in partition_process_mapping_list is source_partition_index, which processes and whether has been used
1485
                    partition_process_mapping_list.append(
1486 1487
                        [source_partition_index, [source_process], [False]]
                    )
1488
                else:
1489
                    partition_list = list(
1490 1491
                        [item[0] for item in partition_process_mapping_list]
                    )
1492
                    process_list = list(
1493 1494
                        [item[1] for item in partition_process_mapping_list]
                    )
1495
                    has_used = list(
1496 1497
                        [item[2] for item in partition_process_mapping_list]
                    )
1498

1499 1500 1501 1502 1503
                    if partition_list.count(source_partition_index) == 1:
                        index = partition_list.index(source_partition_index)
                        process_list[index].append(source_process)
                        has_used[index].append(False)
                    else:
1504
                        partition_process_mapping_list.append(
1505 1506
                            [source_partition_index, [source_process], [False]]
                        )
1507 1508

            for target_process in target_process_group:
1509
                # has_sent means the source_partition_index has been sent to target_process
1510 1511
                has_sent = []
                target_partition_index = Resharder.compute_partition_index(
1512 1513 1514 1515 1516 1517
                    target_process,
                    complete_shape,
                    target_dims_mapping,
                    target_process_shape,
                    target_process_group,
                )
1518 1519 1520 1521
                partition_index_list = []
                all_partition_index_list = []
                for source_process in source_process_group:
                    source_partition_index = Resharder.compute_partition_index(
1522 1523 1524 1525 1526 1527
                        source_process,
                        complete_shape,
                        source_dims_mapping,
                        source_process_shape,
                        source_process_group,
                    )
1528
                    to_send_process = None
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
                    if (
                        all(
                            _
                            for _ in list(
                                map(
                                    self.is_overlapped,
                                    source_partition_index,
                                    target_partition_index,
                                )
                            )
                        )
                        and source_partition_index not in has_sent
                    ):
                        idx = list(
                            [item[0] for item in partition_process_mapping_list]
                        ).index(source_partition_index)
                        has_used = list(
                            [item[2] for item in partition_process_mapping_list]
                        )[idx]
                        process_list = list(
                            [item[1] for item in partition_process_mapping_list]
                        )[idx]
1551 1552 1553 1554 1555 1556 1557
                        i = 0
                        while i < len(has_used):
                            if not has_used[i]:
                                to_send_process = process_list[i]
                                has_used[i] = True
                                break
                            i += 1
1558

1559 1560 1561 1562
                        if i == len(has_used):
                            has_used = list(map(lambda x: False, has_used))
                            to_send_process = process_list[0]
                            has_used[0] = True
1563 1564 1565
                        assert (
                            to_send_process is not None
                        ), "Failed to find the send process."
1566 1567 1568 1569 1570 1571 1572 1573

                        if to_send_process not in op_desc_seq.keys():
                            op_desc_seq[to_send_process] = []
                        if target_process not in op_desc_seq.keys():
                            op_desc_seq[target_process] = []
                        all_partition_index_list.append(source_partition_index)

                        # append send and recv op desc
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
                        is_bool = dist_tensor.serial_tensor.dtype == paddle.bool
                        send_op_desc = SendOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
                        recv_op_desc = RecvOpDesc(
                            source_partition_index,
                            to_send_process,
                            target_process,
                            is_bool=is_bool,
                        )
1587 1588 1589
                        op_desc_seq[to_send_process].append(send_op_desc)
                        op_desc_seq[target_process].append(recv_op_desc)
                        has_sent.append(source_partition_index)
1590 1591 1592
                        Resharder.concat_partitions(
                            partition_index_list, source_partition_index
                        )
1593 1594 1595

                # append concat op desc
                op_desc_seq[target_process].append(
1596 1597
                    ConcatOpDesc(all_partition_index_list)
                )
1598 1599 1600 1601 1602 1603

                # append slice op desc
                slice_starts = []
                slice_ends = []
                slices_axes = []
                concatenated_partition_index = partition_index_list[0]
1604 1605
                to_slice_tensor_shape = []

1606
                for idx, item in enumerate(concatenated_partition_index):
1607 1608 1609
                    slice_starts.append(
                        target_partition_index[idx][0] - item[0]
                    )
1610 1611
                    slice_ends.append(target_partition_index[idx][1] - item[0])
                    slices_axes.append(idx)
1612 1613
                    to_slice_tensor_shape.append(item[1] - item[0])

1614
                op_desc_seq[target_process].append(
1615 1616 1617 1618 1619 1620 1621
                    SliceOpDesc(
                        slice_starts,
                        slice_ends,
                        slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                )
1622

1623
        # In the same process group, it will use allgahther and slice op.
1624
        else:
1625
            # NOTE: It just supports even partition scene.
1626 1627 1628 1629 1630
            partition_index_list = []
            all_partition_index_list = []
            process_index = []
            for source_process in source_process_group:
                source_partition_index = Resharder.compute_partition_index(
1631 1632 1633 1634 1635 1636
                    source_process,
                    complete_shape,
                    source_dims_mapping,
                    source_process_shape,
                    source_process_group,
                )
1637 1638
                if source_partition_index not in partition_index_list:
                    partition_index_list.append(source_partition_index)
1639 1640 1641 1642 1643 1644 1645 1646
                    process_index.append(
                        [
                            [
                                source_process,
                            ],
                            source_partition_index,
                        ]
                    )
1647
                else:
1648 1649 1650
                    process_index[
                        partition_index_list.index(source_partition_index)
                    ][0].append(source_process)
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

            for i in range(len(process_index[0][0])):
                group = []
                for j in range(len(process_index)):
                    group.append(process_index[j][0][i])
                    if i == 0:
                        all_partition_index_list.append(process_index[j][1])
                for process in group:
                    # append slice op desc
                    slice_starts = []
                    slice_ends = []
                    slices_axes = []
                    target_partition_index = Resharder.compute_partition_index(
1664 1665 1666 1667 1668 1669
                        process,
                        complete_shape,
                        target_dims_mapping,
                        target_process_shape,
                        target_process_group,
                    )
1670 1671 1672 1673 1674
                    for idx, item in enumerate(target_partition_index):
                        slice_starts.append(item[0])
                        slice_ends.append(item[1])
                        slices_axes.append(idx)

1675
                    to_slice_tensor_shape = dist_tensor.global_sizes()
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
                    slice_op_desc = SliceOpDesc(
                        starts=slice_starts,
                        ends=slice_ends,
                        axes=slices_axes,
                        shape=to_slice_tensor_shape,
                    )
                    allgather_shape = (
                        None
                        if not serial
                        else dist_tensor.local_sizes(rank=process)
                    )
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
                    # c_concat pass
                    if (
                        target_dims_mapping.count(-1)
                        == len(target_dims_mapping)
                        and source_dims_mapping[:-1].count(-1)
                        == len(source_dims_mapping[:-1])
                        and source_dims_mapping[-1] != -1
                    ):
                        op_desc_seq[process] = [
                            AllGatherConcatOpDesc(
                                group=group, shape=allgather_shape
                            )
1699
                        ]
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
                    else:
                        op_desc_seq[process] = (
                            [
                                AllGatherOpDesc(
                                    group=group,
                                    shape=allgather_shape,
                                    is_bool=(
                                        source_tensor.dtype == paddle.bool
                                    ),
                                ),
                                ConcatOpDesc(
                                    partition_index_list=all_partition_index_list
                                ),
                                slice_op_desc,
                            ]
                            if len(group) > 1
                            else [slice_op_desc]
                        )
1718 1719 1720

        return op_desc_seq

1721 1722 1723
    def parse_op_desc(
        self, block, op_desc_seq, var_name, reshard_op, dist_attr
    ):
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
        """Parse op desc sequence and insert op in the block"""
        tensor_list = []
        partition_tensor_list = []
        if self.rank_id not in op_desc_seq.keys():
            return
        op_desc_list = op_desc_seq[self.rank_id]

        idx = None
        for index, op in list(enumerate(block.ops)):
            if op.desc.id == reshard_op.desc.id:
                idx = index
                break
1736 1737 1738 1739 1740
        assert (
            idx is not None
        ), "The op for reshard cannot be found in the rank {} program.".format(
            self.rank_id
        )
1741 1742

        matched_op = block.ops[idx]
1743 1744 1745
        source_tensor = get_var_with_recursion(
            var_name, block, self.auto_parallel_main_prog
        )
1746 1747 1748 1749
        for op_desc in op_desc_list:
            if isinstance(op_desc, AllGatherOpDesc):  # noqa: F401
                if var_name not in self.has_allgather.keys():
                    self.has_allgather[var_name] = []
1750 1751 1752 1753 1754
                if not self.has_allgather[
                    var_name
                ] or op_desc.group not in list(
                    map(lambda x: x[0], self.has_allgather[var_name])
                ):
1755 1756 1757
                    if op_desc.is_bool:
                        # for bool data allgather, cast to int64 -> allgather -> cast bool
                        out_cast = Inserter.insert_cast_op(
1758 1759 1760 1761 1762 1763
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
1764
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1765 1766 1767 1768 1769 1770
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1771 1772 1773 1774
                        idx += idx_offset
                        tensor_name_list = []
                        for var in tensor_list:
                            out_cast = Inserter.insert_cast_op(
1775 1776 1777 1778 1779 1780
                                block,
                                idx,
                                var,
                                reshard_op.attr('op_role'),
                                paddle.bool,
                            )
1781 1782 1783
                            tensor_name_list.append(out_cast.name)
                            idx += 1
                        self.has_allgather[var_name].append(
1784 1785
                            [op_desc.group, tensor_name_list]
                        )
1786 1787
                    else:
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
1788 1789 1790 1791 1792 1793
                            block,
                            idx,
                            source_tensor,
                            op_desc.group,
                            reshard_op.attr('op_role'),
                        )
1794 1795 1796
                        idx += idx_offset
                        tensor_name_list = [var.name for var in tensor_list]
                        self.has_allgather[var_name].append(
1797 1798
                            [op_desc.group, tensor_name_list]
                        )
1799 1800 1801 1802
                else:
                    for item in self.has_allgather[var_name]:
                        if op_desc.group == item[0]:
                            tensor_list = [
C
caozhou 已提交
1803
                                get_var_with_recursion(
1804 1805 1806 1807
                                    var_name,
                                    block,
                                    self.auto_parallel_main_prog,
                                )
1808 1809 1810
                                for var_name in item[1]
                            ]
                            break
1811 1812 1813
                assert (
                    tensor_list
                ), "The result of parsing allgather op should not be None."
1814 1815 1816 1817 1818

            elif isinstance(op_desc, SendOpDesc):
                if var_name not in self.has_sent.keys():
                    self.has_sent[var_name] = []
                if op_desc.dst not in self.has_sent[var_name]:
1819 1820
                    if op_desc.is_bool:
                        out_cast = Inserter.insert_cast_op(
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
                            block,
                            idx,
                            source_tensor,
                            reshard_op.attr('op_role'),
                            paddle.int64,
                        )
                        Inserter.insert_send_op(
                            block,
                            idx + 1,
                            out_cast,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1835 1836
                        idx += 2
                    else:
1837 1838 1839 1840 1841 1842 1843 1844
                        Inserter.insert_send_op(
                            block,
                            idx,
                            source_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1845
                        idx += 1
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
                    self.has_sent[var_name].append(op_desc.dst)

            elif isinstance(op_desc, RecvOpDesc):
                if var_name not in self.has_recv.keys():
                    self.has_recv[var_name] = {}
                if op_desc.src not in self.has_recv[var_name].keys():
                    partition_index = op_desc.partition_index
                    shape = []
                    for index in partition_index:
                        shape.append(index[1] - index[0])
1856 1857 1858 1859 1860 1861 1862
                    if op_desc.is_bool:
                        # for bool data, recv int64 -> cast to bool
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=paddle.int64,
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1873
                        out_cast = Inserter.insert_cast_op(
1874 1875 1876 1877 1878 1879
                            block,
                            idx + 1,
                            recv_tensor,
                            reshard_op.attr('op_role'),
                            paddle.bool,
                        )
1880 1881 1882 1883 1884 1885 1886 1887 1888
                        tensor_list.append(out_cast)
                        idx += 2
                        self.has_recv[var_name][op_desc.src] = out_cast
                    else:
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=source_tensor.dtype,
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
                            type=source_tensor.type,
                        )
                        Inserter.insert_recv_op(
                            block,
                            idx,
                            recv_tensor,
                            op_desc.src,
                            op_desc.dst,
                            reshard_op.attr('op_role'),
                        )
1899 1900 1901 1902 1903

                        # for lod tensor, need reset lod after received
                        if recv_tensor.lod_level != 0:
                            set_lod = False
                            # use data lod to reset tensor lod
1904 1905 1906
                            for (
                                tmp_block
                            ) in self.auto_parallel_main_prog.blocks:
1907 1908
                                for tmp_var_name in tmp_block.vars:
                                    tmp_var = tmp_block.vars[tmp_var_name]
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
                                    if (
                                        tmp_var.is_data
                                        and tmp_var.lod_level
                                        == recv_tensor.lod_level
                                    ):
                                        reset_lod_out = (
                                            Inserter.insert_reset_lod_op(
                                                block,
                                                idx + 1,
                                                recv_tensor,
                                                tmp_var,
                                                reshard_op.attr('op_role'),
                                            )
                                        )
1923 1924 1925
                                        tensor_list.append(reset_lod_out)
                                        idx += 2
                                        self.has_recv[var_name][
1926 1927
                                            op_desc.src
                                        ] = reset_lod_out
1928 1929 1930 1931 1932 1933 1934 1935 1936
                                        set_lod = True
                                        break
                                if set_lod:
                                    break
                            assert set_lod is True
                        else:
                            tensor_list.append(recv_tensor)
                            idx += 1
                            self.has_recv[var_name][op_desc.src] = recv_tensor
1937 1938 1939 1940 1941 1942 1943 1944
                else:
                    tensor_list.append(self.has_recv[var_name][op_desc.src])

            elif isinstance(op_desc, ConcatOpDesc):
                partition_index_list = op_desc.partition_index_list
                idx_list = [idx]
                for index, tensor in enumerate(tensor_list):
                    Inserter.concat_partitions_with_op(
1945 1946 1947 1948 1949 1950 1951
                        partition_tensor_list,
                        tensor,
                        partition_index_list[index],
                        block,
                        idx_list,
                        reshard_op.attr('op_role'),
                    )
1952 1953
                idx = idx_list[0]

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
            elif isinstance(op_desc, SliceOpDesc) or isinstance(
                op_desc, AllGatherConcatOpDesc
            ):
                target_tensor = None
                if isinstance(op_desc, SliceOpDesc):
                    assert (
                        len(partition_tensor_list) == 1
                        or not partition_tensor_list
                    )
                    to_slice_tensor = (
                        partition_tensor_list[0][0]
                        if len(partition_tensor_list) == 1
                        else source_tensor
                    )
                    new_name = unique_name.generate(var_name + "@RESHARD")
                    target_tensor = Inserter.insert_slice_op(
                        block,
                        idx,
                        to_slice_tensor,
                        starts=op_desc.starts,
                        ends=op_desc.ends,
                        axes=op_desc.axes,
                        new_var_name=new_name,
                        op_role=reshard_op.attr('op_role'),
                    )
                else:
                    target_tensor = Inserter.insert_c_concat_op(
                        block,
                        idx,
                        source_tensor,
                        op_desc.group,
                        reshard_op.attr('op_role'),
                    )
1987

1988
                assert target_tensor is not None
1989 1990 1991
                process_mesh = dist_attr[0]
                dims_mapping = dist_attr[1]

1992 1993 1994 1995
                tensor_attr = TensorDistributedAttribute()
                tensor_attr.dims_mapping = dims_mapping
                tensor_attr.process_mesh = process_mesh
                self.dist_context.set_tensor_dist_attr_for_program(
1996 1997
                    target_tensor, tensor_attr
                )
1998

1999
                if matched_op.type == "while":
2000
                    # var_reshard_mapping means the while op input need be changed to
2001 2002 2003 2004 2005 2006
                    if (
                        "var_reshard_mapping"
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ].keys()
                    ):
2007
                        Resharder.while_block_info[op.attr("sub_block").id][
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
                            "var_reshard_mapping"
                        ] = {}
                    if (
                        var_name
                        not in Resharder.while_block_info[
                            op.attr("sub_block").id
                        ]["var_reshard_mapping"].keys()
                    ):
                        Resharder.while_block_info[op.attr("sub_block").id][
                            "var_reshard_mapping"
                        ][var_name] = []
2019
                    Resharder.while_block_info[op.attr("sub_block").id][
2020 2021
                        "var_reshard_mapping"
                    ][var_name].append([dist_attr, target_tensor.name])
2022 2023 2024

                # rename op input name according to new name
                for op in block.ops:
2025 2026
                    # just for while op
                    while_op_X_append = []
2027
                    for name in op.input_arg_names:
2028 2029 2030
                        op_dist_attr = (
                            self.dist_context.get_op_dist_attr_for_program(op)
                        )
2031 2032
                        if name == var_name and op_dist_attr is not None:
                            if op.desc.id() == matched_op.desc.id():
2033 2034 2035 2036
                                if matched_op.type == "while":
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
2037 2038 2039 2040 2041
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
2042
                                    op_dist_attr.set_input_dist_attr(
2043 2044
                                        new_name, op_input_dist_attr
                                    )
2045
                                    op_dist_attr.set_input_dims_mapping(
2046 2047 2048 2049 2050 2051
                                        new_name, dims_mapping
                                    )
                                    if (
                                        old_name
                                        in op_dist_attr._inputs_dist_attrs
                                    ):
2052
                                        op_dist_attr.del_input_dist_attr(
2053 2054
                                            old_name
                                        )
2055 2056 2057 2058
                                    while_op_X_append.append(new_name)
                                    continue
                                else:
                                    op.desc._rename_input(
2059 2060
                                        name, target_tensor.name
                                    )
2061 2062 2063
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
2064 2065 2066 2067 2068
                                    op_input_dist_attr = (
                                        op_dist_attr.get_input_dist_attr(
                                            old_name
                                        )
                                    )
2069
                                    op_dist_attr.set_input_dist_attr(
2070 2071
                                        new_name, op_input_dist_attr
                                    )
2072
                                    op_dist_attr.set_input_dims_mapping(
2073 2074
                                        new_name, dims_mapping
                                    )
2075 2076
                                    op_dist_attr.del_input_dist_attr(old_name)
                                    continue
2077 2078

                            op_process_mesh = op_dist_attr.process_mesh
2079 2080 2081
                            op_input_dims_mapping = (
                                op_dist_attr.get_input_dims_mapping(var_name)
                            )
2082
                            # NOTE: For op whose process mesh is a union, its input will not be renamed by other op reshard result now which means that it will have more reshard operation.
2083 2084 2085 2086
                            if (
                                op_process_mesh == process_mesh
                                and op_input_dims_mapping == dims_mapping
                            ):
2087
                                op.desc._rename_input(name, target_tensor.name)
2088 2089 2090
                                old_name = name
                                new_name = target_tensor.name
                                assert old_name != new_name
2091 2092 2093
                                op_input_dist_attr = (
                                    op_dist_attr.get_input_dist_attr(old_name)
                                )
2094
                                op_dist_attr.set_input_dist_attr(
2095 2096
                                    new_name, op_input_dist_attr
                                )
2097
                                op_dist_attr.set_input_dims_mapping(
2098 2099
                                    new_name, dims_mapping
                                )
2100
                                op_dist_attr.del_input_dist_attr(old_name)
2101

2102 2103 2104
                    # for while op, the input X should reset
                    if while_op_X_append:
                        proto = OpProtoHolder.instance().get_op_proto(op.type)
2105 2106 2107 2108
                        op.desc.set_input(
                            proto.inputs[0].name,
                            op.input("X") + while_op_X_append,
                        )
2109

2110
    def _get_subblock_input_attrs(self, op, var_name):
2111
        # NOTE: Multi while loop is not supported
2112
        assert op.type in _g_subblock_ops
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        input_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.input_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    input_dims_mapping = dist_attr.get_input_dims_mapping(
2126 2127
                        var_name
                    )
2128 2129
                    has_exist = False
                    for input_attr in input_attrs:
2130 2131 2132 2133
                        if (
                            process_mesh == input_attr[0]
                            and input_dims_mapping == input_attr[1]
                        ):
2134 2135 2136 2137 2138 2139
                            has_exist = True
                            break
                    if not has_exist:
                        input_attrs.append([process_mesh, input_dims_mapping])
        return input_attrs

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
    def _get_subblock_output_attrs(self, op, var_name):
        # NOTE: Multi while loop is not supported
        assert op.type in _g_subblock_ops
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        output_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.output_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    output_dims_mapping = dist_attr.get_output_dims_mapping(
                        var_name
                    )
                    has_exist = False
                    for output_attr in output_attrs:
                        if (
                            process_mesh == output_attrs[0]
                            and output_dims_mapping == output_attrs[1]
                        ):
                            has_exist = True
                            break
                    if not has_exist:
                        output_attrs.append([process_mesh, output_dims_mapping])
        return output_attrs

2170 2171 2172 2173 2174 2175
    def _get_common_op_input_attrs(self, op, var_name):
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        dist_attr = dist_op.dist_attr
        op_process_mesh = dist_attr.process_mesh
        for process_mesh in self.dist_context.process_meshes:
2176 2177 2178 2179 2180
            if set(process_mesh.process_ids) & (
                set(op_process_mesh.process_ids)
            ) and len(process_mesh.process_ids) < len(
                op_process_mesh.process_ids
            ):
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
                process_meshes.append(process_mesh)

        # it means that the process mesh is not a union when process meshes is none
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        input_dims_mapping = dist_attr.get_input_dims_mapping(var_name)
        input_attrs = []
        for process_mesh in process_meshes:
            input_attrs.append([process_mesh, input_dims_mapping])

        return input_attrs

    def get_op_input_attrs(self, op, var_name):
        op_input_attrs = []
2196

2197 2198
        if op.type in _g_subblock_ops:
            op_input_attrs = self._get_subblock_input_attrs(op, var_name)
2199 2200 2201 2202 2203
            if not op_input_attrs:
                # NOTE: [hack method]
                # Adapt to quantization pass, which presist_vars, including inputs and outputs, all are in global_block.
                # Therefore, the while_op's inputs will contain the all persist_vars, which will be inputs or output of the quantization op in subblock.
                op_input_attrs = self._get_subblock_output_attrs(op, var_name)
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
        else:
            op_input_attrs = self._get_common_op_input_attrs(op, var_name)

        assert op_input_attrs

        return op_input_attrs

    def _remove_global_process_mesh(self):
        """Remove global process mesh from dist_context.process_meshes"""
        processes = set()
        process_mesh_count = len(self.dist_context.process_meshes)
        if process_mesh_count > 1:
            global_process_mesh_idx = None
            for process_mesh in self.dist_context.process_meshes:
2218
                for process in process_mesh.process_ids:
2219 2220
                    processes.add(process)
            for idx, process_mesh in enumerate(
2221 2222
                self.dist_context.process_meshes
            ):
2223
                if len(set(process_mesh.process_ids)) == len(processes):
2224 2225
                    global_process_mesh_idx = idx
                    break
2226

2227
            if global_process_mesh_idx is not None:
2228 2229 2230 2231 2232
                is_removed = False
                global_mesh = self.dist_context.process_meshes[idx]
                for i, mesh in enumerate(self.dist_context.process_meshes):
                    if i == idx:
                        continue
2233
                    if set(mesh.process_ids) < set(global_mesh.process_ids):
2234 2235 2236 2237
                        is_removed = True

                if is_removed:
                    self.dist_context.process_meshes.pop(idx)
2238 2239 2240 2241

    def _change_subblock_op_input_and_output(self, block_idx, block):
        if "var_reshard_mapping" in Resharder.while_block_info[block_idx]:
            var_reshard_mapping = Resharder.while_block_info[block_idx][
2242 2243
                "var_reshard_mapping"
            ]
2244 2245 2246 2247 2248 2249 2250 2251
            for op in block.ops:
                for var_name in op.input_arg_names:
                    if var_name in var_reshard_mapping:
                        # in while sub block, the union process mesh is not split before reshard sub block
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        dist_attr = dist_op.dist_attr
                        target_name = None
                        for item in var_reshard_mapping[var_name]:
2252 2253 2254 2255 2256
                            if (
                                dist_attr.process_mesh == item[0][0]
                                and dist_attr.get_input_dims_mapping(var_name)
                                == item[0][1]
                            ):
2257 2258 2259 2260 2261 2262 2263
                                target_name = item[1]
                                break
                        if target_name is None:
                            continue
                        else:
                            op.desc._rename_input(var_name, target_name)
                            dist_op = self.dist_context.get_dist_op_for_program(
2264 2265
                                op
                            )
2266 2267 2268 2269
                            op_dist_attr = dist_op.dist_attr
                            old_name = var_name
                            new_name = target_name
                            assert old_name != new_name
2270 2271 2272
                            op_input_dist_attr = (
                                op_dist_attr.get_input_dist_attr(old_name)
                            )
2273
                            op_dist_attr.set_input_dist_attr(
2274 2275
                                new_name, op_input_dist_attr
                            )
2276 2277 2278 2279 2280 2281 2282
                            op_dist_attr.del_input_dist_attr(old_name)

                # the outputs also need to be renamed when the output name is the same with input name in inplace op
                for var_name in op.output_arg_names:
                    # if the tensor has been resharded multiply, it is not supported now.
                    if var_name in var_reshard_mapping:
                        if len(var_reshard_mapping[var_name]) > 1:
2283
                            raise ValueError(
2284
                                "The scene is not supported that the output is inplaced and the tensor has been resharded multiply when as input."
2285
                            )
2286 2287 2288 2289 2290 2291 2292 2293 2294
                        target_name = var_reshard_mapping[var_name][0][1]

                        op.desc._rename_output(var_name, target_name)
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        op_dist_attr = dist_op.dist_attr
                        old_name = var_name
                        new_name = target_name
                        assert old_name != new_name
                        op_output_dist_attr = op_dist_attr.get_output_dist_attr(
2295 2296
                            old_name
                        )
2297
                        op_dist_attr.set_output_dist_attr(
2298 2299
                            new_name, op_output_dist_attr
                        )
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
                        op_dist_attr.del_output_dist_attr(old_name)

    def _reshard_input(self, block):
        idx = 0
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]

            if self.is_special_op(op):
                idx += 1
                continue

            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None:
2314 2315 2316
                op_input_dist_attrs = (
                    []
                )  # [(op_process_mesh, op_input_dims_mapping), (op_process_mesh, op_input_dims_mapping)]
2317
                if op.type in _g_subblock_ops:
2318 2319 2320 2321
                    if not self.is_condition_replicative(op):
                        raise ValueError(
                            "Please check the condition due to the dims mapping is not replicative."
                        )
2322 2323 2324 2325
                    if (
                        op.attr("sub_block").id
                        not in Resharder.while_block_info
                    ):
2326
                        Resharder.while_block_info[op.attr("sub_block").id] = {}
2327 2328 2329
                    Resharder.while_block_info[op.attr("sub_block").id][
                        "op_id"
                    ] = op.desc.id()
2330 2331 2332 2333

                if op.type == "while":
                    # condition var process mesh is the same with op and dims_mapping is replicative, so it do not need reshard
                    input_var_names = op.input("X")
2334 2335
                elif op.type == "conditional_block":
                    input_var_names = op.input("Input")
2336
                else:
2337 2338 2339 2340 2341 2342
                    input_var_names = op.input_arg_names
                # to avoid while op X order different
                input_var_names.sort()

                idx_offset = 0
                for var_name in input_var_names:
2343 2344
                    # skip lod_tensor_blocking_queue_? name
                    if "lod_tensor_blocking_queue" in var_name:
2345
                        continue
2346 2347 2348
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2349
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2350 2351
                        var
                    )
2352 2353 2354

                    # judge whether union tensor dims_mapping all -1
                    is_union_process_mesh_tensor = False
2355 2356 2357 2358 2359
                    if (
                        dist_tensor.dist_attr.process_mesh
                        not in self.dist_context.process_meshes
                        and self.dist_context.process_meshes
                    ):
2360 2361
                        is_union_process_mesh_tensor = True
                        assert dist_tensor.dist_attr.dims_mapping.count(
2362 2363
                            -1
                        ) == len(dist_tensor.dist_attr.dims_mapping)
2364 2365 2366 2367 2368 2369 2370 2371

                    op_input_attrs = self.get_op_input_attrs(op, var_name)
                    for input_attr in op_input_attrs:
                        input_process_mesh = None

                        # deal with union tensor
                        if is_union_process_mesh_tensor:
                            # if op process mesh is subset of union tensor process mesh, need no reshard
2372 2373
                            if set(input_attr[0].process_ids) <= set(
                                dist_tensor.dist_attr.process_mesh.process_ids
2374 2375
                            ):
                                continue
2376 2377

                        if dist_tensor is not None and self.need_reshard(
2378 2379
                            dist_tensor, input_attr
                        ):
2380
                            reshard_op_desc = self.find_op_desc_seq(
2381 2382 2383 2384 2385
                                dist_tensor, input_attr
                            )
                            self.parse_op_desc(
                                block, reshard_op_desc, var_name, op, input_attr
                            )
2386
                            cur_op_count = len(block.ops)
2387 2388 2389
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2390
                            pre_op_count = cur_op_count
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
                idx = idx + idx_offset + 1
            else:
                idx += 1

    def _hadnle_recv(self, block, idx, var, op, send_rank, recv_rank):
        if self.rank_id == recv_rank:
            # if recv bool data, recv then cast
            if var.dtype == paddle.bool:
                recv_cast_out = block.create_var(
                    name=unique_name.generate(var.name + "@recv"),
                    shape=var.shape,
                    lod_level=var.lod_level,
                    dtype=paddle.int64,
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
                    type=var.type,
                )
                Inserter.insert_recv_op(
                    block,
                    idx + 1,
                    recv_cast_out,
                    send_rank,
                    recv_rank,
                    op.attr('op_role'),
                )
2414 2415 2416 2417 2418 2419
                reset_lod_out = None
                if var.lod_level != 0:
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2420 2421 2422 2423
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2424
                                reset_lod_out = block.create_var(
2425 2426 2427
                                    name=unique_name.generate(
                                        var.name + "@RESETLOD"
                                    ),
2428 2429 2430
                                    shape=recv_cast_out.shape,
                                    type=recv_cast_out.type,
                                    dtype=recv_cast_out.dtype,
2431 2432
                                    lod_level=recv_cast_out.lod_level,
                                )
2433 2434 2435 2436
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2437
                                    inputs={'X': recv_cast_out, 'Y': tmp_var},
2438
                                    outputs={'Out': reset_lod_out},
2439 2440
                                    attrs={'op_role': op.attr("op_role")},
                                )
2441 2442 2443 2444 2445 2446 2447
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True

                # cast int64 to bool
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
                block._insert_op(
                    idx + 2,
                    type='cast',
                    inputs={
                        'X': [recv_cast_out]
                        if reset_lod_out is None
                        else [reset_lod_out]
                    },
                    outputs={'Out': [var]},
                    attrs={
                        'in_dtype': recv_cast_out.dtype,
                        'out_dtype': var.dtype,
                        'op_role': op.attr('op_role'),
                    },
                )
2463 2464 2465 2466 2467 2468 2469
            else:
                if var.lod_level != 0:
                    recv_out = block.create_var(
                        name=unique_name.generate(var.name + "@recv"),
                        shape=var.shape,
                        lod_level=var.lod_level,
                        dtype=var.int64,
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
                        type=var.type,
                    )
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        recv_out,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2480 2481 2482 2483
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
2484 2485 2486 2487
                            if (
                                tmp_var.is_data
                                and tmp_var.lod_level == var.lod_level
                            ):
2488 2489 2490 2491
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
2492
                                    inputs={'X': recv_out, 'Y': tmp_var},
2493
                                    outputs={'Out': var},
2494 2495
                                    attrs={'op_role': op.attr("op_role")},
                                )
2496 2497 2498 2499 2500
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True
2501
                else:
2502 2503 2504 2505 2506 2507 2508 2509
                    Inserter.insert_recv_op(
                        block,
                        idx + 1,
                        var,
                        send_rank,
                        recv_rank,
                        op.attr('op_role'),
                    )
2510 2511 2512

    def _handle_send(self, block, idx, var, op, send_rank, recv_rank):
        if var.dtype == paddle.bool:
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
            cast_out = Inserter.insert_cast_op(
                block, idx + 1, var, op.attr('op_role'), paddle.int64
            )
            Inserter.insert_send_op(
                block,
                idx + 2,
                cast_out,
                send_rank,
                recv_rank,
                op.attr('op_role'),
            )
2524
        else:
2525 2526 2527
            Inserter.insert_send_op(
                block, idx + 1, var, send_rank, recv_rank, op.attr('op_role')
            )
2528 2529 2530 2531 2532 2533

    def _reshard_output(self, block):
        # insert send and recv op if output process mesh is different from tensor process mesh
        idx = 0
        # skip reader and ops whose process mesh is union
        skip_ops = [
2534 2535 2536 2537 2538
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
            "write_to_array",
            "read_from_array",
2539 2540
            "nop",
            "depend",
2541 2542 2543
        ]
        global _g_special_ops
        skip_ops += _g_special_ops
2544
        skip_ops += _g_subblock_ops
2545 2546 2547 2548 2549 2550 2551
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None and op.type not in skip_ops:
                idx_offset = 0
                for var_name in op.output_arg_names:
2552 2553 2554
                    var = get_var_with_recursion(
                        var_name, block, self.auto_parallel_main_prog
                    )
2555
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
2556 2557
                        var
                    )
2558 2559 2560
                    tensor_process_mesh = dist_tensor.dist_attr.process_mesh
                    output_attr = [
                        dist_op.dist_attr.process_mesh,
2561
                        dist_op.dist_attr.get_output_dims_mapping(var_name),
2562 2563
                    ]
                    if dist_tensor is not None and self.need_reshard(
2564 2565
                        dist_tensor, output_attr, False
                    ):
2566
                        tensor_processes = set(
2567
                            tensor_process_mesh.process_ids
2568
                        ) - (
2569 2570
                            set(tensor_process_mesh.process_ids)
                            & set(output_attr[0].process_ids)
2571
                        )
2572 2573
                        if tensor_processes:
                            if len(tensor_processes) != len(
2574
                                output_attr[0].process_ids
2575
                            ):
2576
                                if dist_tensor.dist_attr.dims_mapping.count(
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
                                    -1
                                ) != len(
                                    dist_tensor.dist_attr.dims_mapping
                                ) or output_attr[
                                    1
                                ].count(
                                    -1
                                ) != len(
                                    output_attr[1]
                                ):
2587
                                    raise ValueError(
2588 2589
                                        "The dims_mapping must be -1"
                                    )
2590 2591
                                else:
                                    for index, tensor_process in enumerate(
2592 2593
                                        tensor_processes
                                    ):
2594 2595 2596
                                        recv_rank = tensor_process
                                        actual_index = index
                                        if index >= len(
2597
                                            output_attr[0].process_ids
2598
                                        ):
2599
                                            actual_index = (
2600
                                                index
2601 2602 2603 2604 2605
                                                - len(
                                                    output_attr[0].process_ids
                                                )
                                            ) % len(output_attr[0].process_ids)
                                        item = output_attr[0].process_ids[
2606 2607
                                            actual_index
                                        ]
2608 2609 2610 2611 2612
                                        if recv_rank == item:
                                            continue
                                        if self.rank_id == item:
                                            # if send bool data, cast then send
                                            self._handle_send(
2613 2614 2615 2616 2617 2618 2619
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2620 2621 2622
                                        if self.rank_id == recv_rank:
                                            # if recv bool data, recv then cast
                                            self._hadnle_recv(
2623 2624 2625 2626 2627 2628 2629
                                                block,
                                                idx,
                                                var,
                                                op,
                                                item,
                                                recv_rank,
                                            )
2630 2631
                            else:
                                for index, tensor_process in enumerate(
2632 2633
                                    tensor_processes
                                ):
2634
                                    recv_rank = tensor_process
2635
                                    item = output_attr[0].process_ids[index]
2636 2637 2638 2639 2640
                                    if recv_rank == item:
                                        continue
                                    if self.rank_id == item:
                                        # if send bool data, cast then send
                                        self._handle_send(
2641 2642
                                            block, idx, var, op, item, recv_rank
                                        )
2643 2644 2645
                                    if self.rank_id == recv_rank:
                                        # if recv bool data, recv then cast
                                        self._hadnle_recv(
2646 2647
                                            block, idx, var, op, item, recv_rank
                                        )
2648 2649

                            cur_op_count = len(block.ops)
2650 2651 2652
                            idx_offset = (
                                idx_offset + cur_op_count - pre_op_count
                            )
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
                            pre_op_count = cur_op_count

                idx = idx + idx_offset + 1
            else:
                idx += 1

    def reshard(self):
        self._remove_global_process_mesh()
        for block_idx, block in enumerate(self.auto_parallel_main_prog.blocks):
            # change the var_name before resharding sub block
            if block_idx in Resharder.while_block_info:
                self._change_subblock_op_input_and_output(block_idx, block)

            # reshard input
            self._reshard_input(block)

            # reshard output
            # NOTE: Only support that insert send and recv op if output process mesh is different from tensor process mesh
            self._reshard_output(block)
2672 2673

        # remove no need vars and ops in the main program
2674 2675 2676 2677 2678 2679
        Remover.remove_no_need_in_main(
            self.auto_parallel_main_prog,
            self.dist_context,
            self.rank_id,
            self.dist_params_grads,
        )
2680

2681
        # remove no need vars and ops in the startip program
2682 2683 2684
        Remover.remove_no_need_in_startup(
            self.auto_parallel_main_prog, self.auto_parallel_startup_prog
        )
C
caozhou 已提交
2685

2686 2687
        # reset some variable when remove operation ended
        Resharder.while_block_info = {}
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701

    def get_cost(self, op, tensor, cluster):
        # NOTE: The program should be the serial_program which is not been parted
        global _g_special_ops
        not_supported_op_type = _g_special_ops + ["while"]
        reshard_op_cost = None
        if op.type in not_supported_op_type:
            return reshard_op_cost
        else:
            tensor_name = tensor.name
            if tensor_name == "lod_tensor_blocking_queue_0":
                return reshard_op_cost
            else:
                dist_tensor = self.dist_context.get_dist_tensor_for_program(
2702 2703
                    tensor
                )
2704 2705 2706
                # simplified processing: ignore union process mesh and output reshard
                dist_op = self.dist_context.get_dist_op_for_program(op)
                dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
2707 2708
                    tensor.name
                )
2709 2710 2711
                process_mesh = dist_op.dist_attr.process_mesh
                dist_attr = [process_mesh, dims_mapping]
                if dist_tensor is not None and self.need_reshard(
2712 2713
                    dist_tensor, dist_attr
                ):
2714 2715 2716 2717 2718
                    if tensor_name not in self._has_resharded:
                        self._has_resharded[tensor_name] = [dist_op]
                    else:
                        for item in self._has_resharded[tensor_name]:
                            item_dist_attr = item.dist_attr
2719 2720 2721 2722 2723
                            item_dims_mapping = (
                                item_dist_attr.get_input_dims_mapping(
                                    tensor_name
                                )
                            )
2724
                            item_process_mesh = item_dist_attr.process_mesh
2725 2726 2727 2728
                            if (
                                dims_mapping == item_dims_mapping
                                and item_process_mesh == process_mesh
                            ):
2729 2730 2731
                                return reshard_op_cost
                        self._has_resharded[tensor_name].append(dist_op)

2732 2733 2734
                    reshard_op_desc = self.find_op_desc_seq(
                        dist_tensor, dist_attr, serial=True
                    )
2735 2736
                    dtype = dist_tensor.serial_tensor.dtype
                    reshard_op_cost = self.parse_op_desc_for_cost(
2737 2738
                        reshard_op_desc, dtype, cluster
                    )
2739 2740 2741

        return reshard_op_cost

2742 2743 2744 2745 2746 2747 2748 2749 2750
    def _concat_partitions_for_cost(
        self,
        partition_tensor_list,
        partition_index,
        dtype,
        rank_id,
        local_rank_comp_cost,
        cluster,
    ):
2751 2752 2753 2754 2755 2756
        if not partition_tensor_list:
            partition_tensor_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
2757 2758 2759 2760 2761 2762 2763
                (
                    concat_axis,
                    first_order,
                    new_partition,
                ) = Resharder.compute_concat_info(
                    partition_tensor_list[i], partition_index
                )
2764 2765 2766 2767 2768 2769 2770
                if concat_axis != -1:
                    has_concat = True
                    concat_desc = {}
                    concat_desc["op"] = "concat"
                    concat_desc["attrs"] = {"axis": concat_axis}
                    if first_order == 0:
                        concat_desc["inputs"] = {
2771 2772 2773 2774
                            "X": [
                                (dtype, partition_tensor_list[i]),
                                (dtype, partition_index),
                            ]
2775 2776 2777
                        }
                    else:
                        concat_desc["inputs"] = {
2778 2779 2780 2781
                            "X": [
                                (dtype, partition_index),
                                (dtype, partition_tensor_list[i]),
                            ]
2782 2783 2784 2785 2786
                        }
                    partition_tensor_list.pop(i)
                    if rank_id not in local_rank_comp_cost:
                        local_rank_comp_cost[rank_id] = []
                    local_rank_comp_cost[rank_id].append(
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
                        ConcatOpCost(op_desc=concat_desc, cluster=cluster)
                    )
                    self._concat_partitions_for_cost(
                        partition_tensor_list,
                        new_partition,
                        dtype,
                        rank_id,
                        local_rank_comp_cost,
                        cluster,
                    )
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append(partition_index)

    def parse_op_desc_for_cost(self, reshard_op_desc, dtype, cluster):
        def _get_idx(comm_ranks, group_ranks):
            res, is_the_same = None, False
            idx = 0
            while idx < len(comm_ranks):
                if comm_ranks[idx] == set(group_ranks):
                    is_the_same = True

                for rank in group_ranks:
                    if rank in comm_ranks[idx]:
                        res = idx
                        comm_ranks[idx].add(rank)
                if res is None:
                    idx += 1
                else:
                    break
            return res, is_the_same

        comm_context = CommContext(cluster)
        # run communication op before computation op
        # TODO: Communication cost is not calculated when the var has been transfered by the same group in the past
        comm_costs = []
        comm_ranks = []
        local_rank_comp_cost = {}
        for key in reshard_op_desc:
            partition_tensor_list = []
            op_desc_list = reshard_op_desc[key]
            for op_desc in op_desc_list:
                if isinstance(op_desc, SendOpDesc):
                    group_ranks = [key, op_desc.dst]
                    shape = op_desc.shape
2833 2834 2835
                    send_desc = build_comm_desc(
                        "send_v2", group_ranks, dtype, shape
                    )
2836 2837
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2849 2850 2851 2852
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2853 2854 2855 2856 2857 2858 2859 2860
                                (
                                    group_ranks,
                                    SendOpCost(
                                        op_desc=send_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2861 2862 2863 2864
                elif isinstance(op_desc, AllGatherOpDesc):
                    # NOTE: fill_const and other unnecessary op is not calculated because those cost is very small
                    group_ranks = op_desc.group
                    shape = op_desc.shape
2865 2866 2867
                    allgather_desc = build_comm_desc(
                        "c_allgather", group_ranks, dtype, shape
                    )
2868 2869 2870 2871 2872 2873 2874 2875
                    split_inputs_shape = []
                    for idx, dim in enumerate(shape):
                        if idx == 0:
                            split_inputs_shape.append(dim * len(group_ranks))
                        else:
                            split_inputs_shape.append(dim)
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
                        comm_costs.append(
                            [
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            ]
                        )
2887 2888 2889 2890
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
2891 2892 2893 2894 2895 2896 2897 2898
                                (
                                    group_ranks,
                                    AllgatherOpCost(
                                        op_desc=allgather_desc,
                                        comm_context=comm_context,
                                    ),
                                )
                            )
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
                    # calc the split op cost
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
                    split_desc = {}
                    split_desc["op"] = "split"
                    split_desc["inputs"] = {
                        "inputs": [(dtype, split_inputs_shape)]
                    }
                    split_desc["attrs"] = {"num": len(group_ranks), "axis": 0}
                    local_rank_comp_cost[key].append(
2909 2910
                        SplitOpCost(op_desc=split_desc, cluster=cluster)
                    )
2911 2912 2913 2914
                elif isinstance(op_desc, ConcatOpDesc):
                    partition_index_list = op_desc._partition_index_list
                    for idx, partion_idex in enumerate(partition_index_list):
                        self._concat_partitions_for_cost(
2915 2916 2917 2918 2919 2920 2921
                            partition_tensor_list,
                            partion_idex,
                            dtype,
                            key,
                            local_rank_comp_cost,
                            cluster,
                        )
2922 2923 2924 2925

                elif isinstance(op_desc, SliceOpDesc):
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
2926 2927 2928 2929
                    assert (
                        len(partition_tensor_list) == 1
                        or not partition_tensor_list
                    )
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
                    to_slice_tensor_shape = []
                    if len(partition_tensor_list) == 1:
                        for item in partition_tensor_list[0]:
                            to_slice_tensor_shape.append(item[1] - item[0])
                    else:
                        to_slice_tensor_shape = op_desc.shape
                    slice_desc = {}
                    slice_desc["op"] = "slice"
                    infer_flags = list(1 for i in range(len(op_desc.axes)))
                    slice_desc["attrs"] = {
                        "axes": op_desc.axes,
                        "starts": op_desc.starts,
                        "ends": op_desc.ends,
2943
                        "infer_flags": infer_flags,
2944 2945 2946 2947 2948
                    }
                    slice_desc["inputs"] = {
                        "Input": [(dtype, to_slice_tensor_shape)]
                    }
                    local_rank_comp_cost[key].append(
2949 2950
                        SliceOpCost(op_desc=slice_desc, cluster=cluster)
                    )
2951 2952 2953 2954

        res = (comm_costs, local_rank_comp_cost)

        return res