test_multiprocess_dataloader_static.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import time
import unittest
18

19 20
import numpy as np

21
import paddle
22
import paddle.fluid as fluid
23
from paddle.io import DataLoader, Dataset
24

25 26 27 28
EPOCH_NUM = 3
BATCH_SIZE = 8
IMAGE_SIZE = 32
SAMPLE_NUM = 100
29 30 31 32 33 34 35 36 37 38 39
CLASS_NUM = 10


class RandomDataset(Dataset):
    def __init__(self, sample_num, class_num):
        self.sample_num = sample_num
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
40
        label = np.random.randint(0, self.class_num - 1, (1,)).astype('int64')
41 42 43 44 45 46 47 48 49 50 51 52 53 54
        return image, label

    def __len__(self):
        return self.sample_num


def simple_fc_net_static():
    startup_prog = fluid.Program()
    main_prog = fluid.Program()
    startup_prog.random_seed = 1
    main_prog.random_seed = 1

    with fluid.unique_name.guard():
        with fluid.program_guard(main_prog, startup_prog):
55 56 57
            image = fluid.data(
                name='image', shape=[None, IMAGE_SIZE], dtype='float32'
            )
58 59
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            hidden = image
60 61 62 63 64 65
            param_attr = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.8)
            )
            bias_attr = fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.5)
            )
66
            for hidden_size in [10, 20, 30]:
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
                hidden = fluid.layers.fc(
                    hidden,
                    size=hidden_size,
                    act='tanh',
                    param_attr=param_attr,
                    bias_attr=bias_attr,
                )

            predict_label = fluid.layers.fc(
                hidden,
                size=CLASS_NUM,
                act='softmax',
                param_attr=param_attr,
                bias_attr=bias_attr,
            )
82
            loss = paddle.mean(
83 84 85 86 87 88
                paddle.nn.functional.cross_entropy(
                    input=predict_label,
                    label=label,
                    reduction='none',
                    use_softmax=False,
                )
89
            )
90 91 92 93 94 95

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)
    return startup_prog, main_prog, image, label, loss


96 97 98 99 100 101
def prepare_places(with_data_parallel, with_cpu=False, with_gpu=True):
    places = []
    if with_cpu:
        places.append([fluid.CPUPlace()])
        if with_data_parallel:
            places.append([fluid.CPUPlace()] * 2)
102

103 104 105
    if with_gpu and fluid.core.is_compiled_with_cuda():
        tmp = fluid.cuda_places()[:2]
        assert len(tmp) > 0, "no gpu detected"
K
Kaipeng Deng 已提交
106
        if with_data_parallel and len(tmp) > 1:
107 108 109
            places.append(tmp)
        places.append([tmp[0]])
    return places
110 111 112


class TestStaticDataLoader(unittest.TestCase):
K
Kaipeng Deng 已提交
113
    def run_main(self, num_workers, places, persistent_workers, use_pe=True):
114 115 116 117 118
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, image, label, loss = simple_fc_net_static()

            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
119 120 121 122 123 124 125 126 127 128
            dataloader = DataLoader(
                dataset,
                feed_list=[image, label],
                places=places,
                num_workers=num_workers,
                batch_size=BATCH_SIZE,
                return_list=False,
                drop_last=True,
                persistent_workers=persistent_workers,
            )
129 130 131 132 133
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

134 135 136
            if use_pe:
                prog = fluid.CompiledProgram(main_prog)
                if len(places) > 1:
137 138 139
                    prog = prog.with_data_parallel(
                        loss_name=loss.name, places=places
                    )
140 141
            else:
                prog = main_prog
142 143 144 145

            step_list = []
            loss_list = []
            start_t = time.time()
146
            for _ in range(EPOCH_NUM):
147 148 149
                step = 0
                for d in dataloader:
                    assert len(d) == len(places), "{} != {}".format(
150 151
                        len(d), len(places)
                    )
152 153 154 155 156
                    for i, item in enumerate(d):
                        image = item['image']
                        label = item['label']
                        assert image.shape() == [BATCH_SIZE, IMAGE_SIZE]
                        assert label.shape() == [BATCH_SIZE, 1]
157 158
                        assert image._place()._equals(places[i])
                        assert label._place()._equals(places[i])
159 160 161 162 163 164
                    (L,) = exe.run(
                        program=prog,
                        feed=d,
                        fetch_list=[loss],
                        use_program_cache=True,
                    )
165 166 167 168 169 170 171 172
                    loss_list.append(np.mean(L))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
173
            "loss": np.array(loss_list),
174 175 176 177 178
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret

    def test_main(self):
179
        for p in prepare_places(True):
K
Kaipeng Deng 已提交
180 181 182
            for persistent_workers in [True, False]:
                results = []
                for num_workers in [0, 2]:
183 184 185 186 187 188
                    print(
                        self.__class__.__name__,
                        p,
                        num_workers,
                        persistent_workers,
                    )
K
Kaipeng Deng 已提交
189
                    sys.stdout.flush()
190 191 192 193 194
                    ret = self.run_main(
                        num_workers=num_workers,
                        places=p,
                        persistent_workers=persistent_workers,
                    )
K
Kaipeng Deng 已提交
195 196
                    results.append(ret)
                diff = np.max(
197 198 199
                    np.abs(results[0]['loss'] - results[1]['loss'])
                    / np.abs(results[0]['loss'])
                )
K
Kaipeng Deng 已提交
200
                self.assertLess(diff, 1e-2)
201 202


203
class TestStaticDataLoaderReturnList(unittest.TestCase):
204
    def run_single_place(self, num_workers):
205
        scope = fluid.Scope()
206 207 208
        image = fluid.data(
            name='image', shape=[None, IMAGE_SIZE], dtype='float32'
        )
209 210 211
        label = fluid.data(name='label', shape=[None, 1], dtype='int64')
        with fluid.scope_guard(scope):
            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
212 213 214 215 216 217 218 219
            dataloader = DataLoader(
                dataset,
                feed_list=[image, label],
                num_workers=num_workers,
                batch_size=BATCH_SIZE,
                drop_last=True,
                return_list=True,
            )
220 221 222 223 224 225 226

            for d in dataloader:
                assert isinstance(d, list)
                assert len(d) == 2
                assert not isinstance(d[0], list)
                assert not isinstance(d[1], list)

227
    def run_multi_place(self, num_workers):
228
        scope = fluid.Scope()
229 230 231
        image = fluid.data(
            name='image', shape=[None, IMAGE_SIZE], dtype='float32'
        )
232 233 234
        label = fluid.data(name='label', shape=[None, 1], dtype='int64')
        with fluid.scope_guard(scope):
            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
235 236 237 238 239 240 241 242 243
            dataloader = DataLoader(
                dataset,
                feed_list=[image, label],
                num_workers=num_workers,
                batch_size=BATCH_SIZE,
                places=[fluid.CPUPlace()] * 2,
                drop_last=True,
                return_list=True,
            )
244 245 246 247 248 249 250

            for d in dataloader:
                assert isinstance(d, list)
                assert len(d) == 2
                assert isinstance(d[0], list)
                assert isinstance(d[1], list)

251 252 253 254 255 256
    def test_main(self):
        paddle.enable_static()
        for num_workers in [0, 2]:
            self.run_single_place(num_workers)
            self.run_multi_place(num_workers)

257

258 259 260 261 262 263 264 265 266 267 268
class RandomBatchedDataset(Dataset):
    def __init__(self, sample_num, class_num):
        self.sample_num = int(sample_num / BATCH_SIZE)
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        images = []
        labels = []
        for _ in range(BATCH_SIZE):
            image = np.random.random([IMAGE_SIZE]).astype('float32')
269 270 271
            label = np.random.randint(0, self.class_num - 1, (1,)).astype(
                'int64'
            )
272 273 274 275 276 277 278 279 280
            images.append(image)
            labels.append(label)
        return np.stack(images, axis=0), np.stack(labels, axis=0)

    def __len__(self):
        return self.sample_num


class TestStaticDataLoaderWithBatchedDataset(TestStaticDataLoader):
K
Kaipeng Deng 已提交
281
    def run_main(self, num_workers, places, persistent_workers):
282 283 284 285 286
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, image, label, loss = simple_fc_net_static()

            dataset = RandomBatchedDataset(SAMPLE_NUM, CLASS_NUM)
287 288 289 290 291 292 293 294 295 296
            dataloader = DataLoader(
                dataset,
                feed_list=[image, label],
                places=places,
                num_workers=num_workers,
                batch_size=None,
                return_list=False,
                drop_last=True,
                persistent_workers=persistent_workers,
            )
297 298 299 300 301 302 303
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

            prog = fluid.CompiledProgram(main_prog)
            if len(places) > 1:
304 305 306
                prog = prog.with_data_parallel(
                    loss_name=loss.name, places=places
                )
307 308 309 310

            step_list = []
            loss_list = []
            start_t = time.time()
311
            for _ in range(EPOCH_NUM):
312 313 314
                step = 0
                for d in dataloader:
                    assert len(d) == len(places), "{} != {}".format(
315 316
                        len(d), len(places)
                    )
317 318 319 320 321 322 323
                    for i, item in enumerate(d):
                        image = item['image']
                        label = item['label']
                        assert image.shape() == [BATCH_SIZE, IMAGE_SIZE]
                        assert label.shape() == [BATCH_SIZE, 1]
                        assert image._place()._equals(places[i])
                        assert label._place()._equals(places[i])
324 325 326 327 328 329
                    (L,) = exe.run(
                        program=prog,
                        feed=d,
                        fetch_list=[loss],
                        use_program_cache=True,
                    )
330 331 332 333 334 335 336 337
                    loss_list.append(np.mean(L))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
338
            "loss": np.array(loss_list),
339 340 341 342 343
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret


344 345
if __name__ == '__main__':
    unittest.main()