test_multiprocess_dataloader_static.py 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import os
import sys
import six
import time
import unittest
import multiprocessing
import numpy as np

import paddle.fluid as fluid
from paddle.io import Dataset, BatchSampler, DataLoader

28 29 30 31
EPOCH_NUM = 3
BATCH_SIZE = 8
IMAGE_SIZE = 32
SAMPLE_NUM = 100
32 33 34 35
CLASS_NUM = 10


class RandomDataset(Dataset):
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    def __init__(self, sample_num, class_num):
        self.sample_num = sample_num
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, self.class_num - 1, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.sample_num


def simple_fc_net_static():
    startup_prog = fluid.Program()
    main_prog = fluid.Program()
    startup_prog.random_seed = 1
    main_prog.random_seed = 1

    with fluid.unique_name.guard():
        with fluid.program_guard(main_prog, startup_prog):
59 60 61
            image = fluid.data(name='image',
                               shape=[None, IMAGE_SIZE],
                               dtype='float32')
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            hidden = image
            param_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.8))
            bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.5))
            for hidden_size in [10, 20, 30]:
                hidden = fluid.layers.fc(hidden,
                                         size=hidden_size,
                                         act='tanh',
                                         param_attr=param_attr,
                                         bias_attr=bias_attr)

            predict_label = fluid.layers.fc(hidden,
                                            size=CLASS_NUM,
                                            act='softmax',
                                            param_attr=param_attr,
                                            bias_attr=bias_attr)
            loss = fluid.layers.reduce_mean(
81
                fluid.layers.cross_entropy(input=predict_label, label=label))
82 83 84 85 86 87

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)
    return startup_prog, main_prog, image, label, loss


88 89 90 91 92 93
def prepare_places(with_data_parallel, with_cpu=False, with_gpu=True):
    places = []
    if with_cpu:
        places.append([fluid.CPUPlace()])
        if with_data_parallel:
            places.append([fluid.CPUPlace()] * 2)
94

95 96 97
    if with_gpu and fluid.core.is_compiled_with_cuda():
        tmp = fluid.cuda_places()[:2]
        assert len(tmp) > 0, "no gpu detected"
K
Kaipeng Deng 已提交
98
        if with_data_parallel and len(tmp) > 1:
99 100 101
            places.append(tmp)
        places.append([tmp[0]])
    return places
102 103 104


class TestStaticDataLoader(unittest.TestCase):
105

K
Kaipeng Deng 已提交
106
    def run_main(self, num_workers, places, persistent_workers, use_pe=True):
107 108 109 110 111
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, image, label, loss = simple_fc_net_static()

            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
112 113 114 115 116 117 118 119
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
                                    places=places,
                                    num_workers=num_workers,
                                    batch_size=BATCH_SIZE,
                                    return_list=False,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
120 121 122 123 124
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

125 126 127
            if use_pe:
                prog = fluid.CompiledProgram(main_prog)
                if len(places) > 1:
128 129
                    prog = prog.with_data_parallel(loss_name=loss.name,
                                                   places=places)
130 131
            else:
                prog = main_prog
132 133 134 135 136 137 138 139 140 141 142 143 144 145

            step_list = []
            loss_list = []
            start_t = time.time()
            for _ in six.moves.range(EPOCH_NUM):
                step = 0
                for d in dataloader:
                    assert len(d) == len(places), "{} != {}".format(
                        len(d), len(places))
                    for i, item in enumerate(d):
                        image = item['image']
                        label = item['label']
                        assert image.shape() == [BATCH_SIZE, IMAGE_SIZE]
                        assert label.shape() == [BATCH_SIZE, 1]
146 147
                        assert image._place()._equals(places[i])
                        assert label._place()._equals(places[i])
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
                    L, = exe.run(program=prog,
                                 feed=d,
                                 fetch_list=[loss],
                                 use_program_cache=True)
                    loss_list.append(np.mean(L))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret

    def test_main(self):
166
        for p in prepare_places(True):
K
Kaipeng Deng 已提交
167 168 169 170 171 172
            for persistent_workers in [True, False]:
                results = []
                for num_workers in [0, 2]:
                    print(self.__class__.__name__, p, num_workers,
                          persistent_workers)
                    sys.stdout.flush()
173 174 175
                    ret = self.run_main(num_workers=num_workers,
                                        places=p,
                                        persistent_workers=persistent_workers)
K
Kaipeng Deng 已提交
176 177 178 179 180
                    results.append(ret)
                diff = np.max(
                    np.abs(results[0]['loss'] - results[1]['loss']) /
                    np.abs(results[0]['loss']))
                self.assertLess(diff, 1e-2)
181 182


183
class TestStaticDataLoaderReturnList(unittest.TestCase):
184

185 186
    def test_single_place(self):
        scope = fluid.Scope()
187 188 189
        image = fluid.data(name='image',
                           shape=[None, IMAGE_SIZE],
                           dtype='float32')
190 191 192
        label = fluid.data(name='label', shape=[None, 1], dtype='int64')
        with fluid.scope_guard(scope):
            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
193 194 195 196 197 198
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
                                    num_workers=0,
                                    batch_size=BATCH_SIZE,
                                    drop_last=True,
                                    return_list=True)
199 200 201 202 203 204 205 206 207

            for d in dataloader:
                assert isinstance(d, list)
                assert len(d) == 2
                assert not isinstance(d[0], list)
                assert not isinstance(d[1], list)

    def test_multi_place(self):
        scope = fluid.Scope()
208 209 210
        image = fluid.data(name='image',
                           shape=[None, IMAGE_SIZE],
                           dtype='float32')
211 212 213
        label = fluid.data(name='label', shape=[None, 1], dtype='int64')
        with fluid.scope_guard(scope):
            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
214 215 216 217 218 219 220
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
                                    num_workers=0,
                                    batch_size=BATCH_SIZE,
                                    places=[fluid.CPUPlace()] * 2,
                                    drop_last=True,
                                    return_list=True)
221 222 223 224 225 226 227 228

            for d in dataloader:
                assert isinstance(d, list)
                assert len(d) == 2
                assert isinstance(d[0], list)
                assert isinstance(d[1], list)


229
class RandomBatchedDataset(Dataset):
230

231 232 233 234 235 236 237 238 239 240
    def __init__(self, sample_num, class_num):
        self.sample_num = int(sample_num / BATCH_SIZE)
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        images = []
        labels = []
        for _ in range(BATCH_SIZE):
            image = np.random.random([IMAGE_SIZE]).astype('float32')
241 242
            label = np.random.randint(0, self.class_num - 1,
                                      (1, )).astype('int64')
243 244 245 246 247 248 249 250 251
            images.append(image)
            labels.append(label)
        return np.stack(images, axis=0), np.stack(labels, axis=0)

    def __len__(self):
        return self.sample_num


class TestStaticDataLoaderWithBatchedDataset(TestStaticDataLoader):
252

K
Kaipeng Deng 已提交
253
    def run_main(self, num_workers, places, persistent_workers):
254 255 256 257 258
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, image, label, loss = simple_fc_net_static()

            dataset = RandomBatchedDataset(SAMPLE_NUM, CLASS_NUM)
259 260 261 262 263 264 265 266
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
                                    places=places,
                                    num_workers=num_workers,
                                    batch_size=None,
                                    return_list=False,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
267 268 269 270 271 272 273
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

            prog = fluid.CompiledProgram(main_prog)
            if len(places) > 1:
274 275
                prog = prog.with_data_parallel(loss_name=loss.name,
                                               places=places)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

            step_list = []
            loss_list = []
            start_t = time.time()
            for _ in six.moves.range(EPOCH_NUM):
                step = 0
                for d in dataloader:
                    assert len(d) == len(places), "{} != {}".format(
                        len(d), len(places))
                    for i, item in enumerate(d):
                        image = item['image']
                        label = item['label']
                        assert image.shape() == [BATCH_SIZE, IMAGE_SIZE]
                        assert label.shape() == [BATCH_SIZE, 1]
                        assert image._place()._equals(places[i])
                        assert label._place()._equals(places[i])
                    L, = exe.run(program=prog,
                                 feed=d,
                                 fetch_list=[loss],
                                 use_program_cache=True)
                    loss_list.append(np.mean(L))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret


310 311
if __name__ == '__main__':
    unittest.main()