test_multiprocess_dataloader_static.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import six
import time
import unittest
import multiprocessing
import numpy as np

23
import paddle
24 25 26
import paddle.fluid as fluid
from paddle.io import Dataset, BatchSampler, DataLoader

27 28 29 30
EPOCH_NUM = 3
BATCH_SIZE = 8
IMAGE_SIZE = 32
SAMPLE_NUM = 100
31 32 33 34
CLASS_NUM = 10


class RandomDataset(Dataset):
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    def __init__(self, sample_num, class_num):
        self.sample_num = sample_num
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, self.class_num - 1, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.sample_num


def simple_fc_net_static():
    startup_prog = fluid.Program()
    main_prog = fluid.Program()
    startup_prog.random_seed = 1
    main_prog.random_seed = 1

    with fluid.unique_name.guard():
        with fluid.program_guard(main_prog, startup_prog):
58 59 60
            image = fluid.data(name='image',
                               shape=[None, IMAGE_SIZE],
                               dtype='float32')
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            hidden = image
            param_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.8))
            bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.5))
            for hidden_size in [10, 20, 30]:
                hidden = fluid.layers.fc(hidden,
                                         size=hidden_size,
                                         act='tanh',
                                         param_attr=param_attr,
                                         bias_attr=bias_attr)

            predict_label = fluid.layers.fc(hidden,
                                            size=CLASS_NUM,
                                            act='softmax',
                                            param_attr=param_attr,
                                            bias_attr=bias_attr)
            loss = fluid.layers.reduce_mean(
80
                fluid.layers.cross_entropy(input=predict_label, label=label))
81 82 83 84 85 86

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)
    return startup_prog, main_prog, image, label, loss


87 88 89 90 91 92
def prepare_places(with_data_parallel, with_cpu=False, with_gpu=True):
    places = []
    if with_cpu:
        places.append([fluid.CPUPlace()])
        if with_data_parallel:
            places.append([fluid.CPUPlace()] * 2)
93

94 95 96
    if with_gpu and fluid.core.is_compiled_with_cuda():
        tmp = fluid.cuda_places()[:2]
        assert len(tmp) > 0, "no gpu detected"
K
Kaipeng Deng 已提交
97
        if with_data_parallel and len(tmp) > 1:
98 99 100
            places.append(tmp)
        places.append([tmp[0]])
    return places
101 102 103


class TestStaticDataLoader(unittest.TestCase):
104

K
Kaipeng Deng 已提交
105
    def run_main(self, num_workers, places, persistent_workers, use_pe=True):
106 107 108 109 110
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, image, label, loss = simple_fc_net_static()

            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
111 112 113 114 115 116 117 118
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
                                    places=places,
                                    num_workers=num_workers,
                                    batch_size=BATCH_SIZE,
                                    return_list=False,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
119 120 121 122 123
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

124 125 126
            if use_pe:
                prog = fluid.CompiledProgram(main_prog)
                if len(places) > 1:
127 128
                    prog = prog.with_data_parallel(loss_name=loss.name,
                                                   places=places)
129 130
            else:
                prog = main_prog
131 132 133 134 135 136 137 138 139 140 141 142 143 144

            step_list = []
            loss_list = []
            start_t = time.time()
            for _ in six.moves.range(EPOCH_NUM):
                step = 0
                for d in dataloader:
                    assert len(d) == len(places), "{} != {}".format(
                        len(d), len(places))
                    for i, item in enumerate(d):
                        image = item['image']
                        label = item['label']
                        assert image.shape() == [BATCH_SIZE, IMAGE_SIZE]
                        assert label.shape() == [BATCH_SIZE, 1]
145 146
                        assert image._place()._equals(places[i])
                        assert label._place()._equals(places[i])
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                    L, = exe.run(program=prog,
                                 feed=d,
                                 fetch_list=[loss],
                                 use_program_cache=True)
                    loss_list.append(np.mean(L))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret

    def test_main(self):
165
        for p in prepare_places(True):
K
Kaipeng Deng 已提交
166 167 168 169 170 171
            for persistent_workers in [True, False]:
                results = []
                for num_workers in [0, 2]:
                    print(self.__class__.__name__, p, num_workers,
                          persistent_workers)
                    sys.stdout.flush()
172 173 174
                    ret = self.run_main(num_workers=num_workers,
                                        places=p,
                                        persistent_workers=persistent_workers)
K
Kaipeng Deng 已提交
175 176 177 178 179
                    results.append(ret)
                diff = np.max(
                    np.abs(results[0]['loss'] - results[1]['loss']) /
                    np.abs(results[0]['loss']))
                self.assertLess(diff, 1e-2)
180 181


182
class TestStaticDataLoaderReturnList(unittest.TestCase):
183

184
    def run_single_place(self, num_workers):
185
        scope = fluid.Scope()
186 187 188
        image = fluid.data(name='image',
                           shape=[None, IMAGE_SIZE],
                           dtype='float32')
189 190 191
        label = fluid.data(name='label', shape=[None, 1], dtype='int64')
        with fluid.scope_guard(scope):
            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
192 193
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
194
                                    num_workers=num_workers,
195 196 197
                                    batch_size=BATCH_SIZE,
                                    drop_last=True,
                                    return_list=True)
198 199 200 201 202 203 204

            for d in dataloader:
                assert isinstance(d, list)
                assert len(d) == 2
                assert not isinstance(d[0], list)
                assert not isinstance(d[1], list)

205
    def run_multi_place(self, num_workers):
206
        scope = fluid.Scope()
207 208 209
        image = fluid.data(name='image',
                           shape=[None, IMAGE_SIZE],
                           dtype='float32')
210 211 212
        label = fluid.data(name='label', shape=[None, 1], dtype='int64')
        with fluid.scope_guard(scope):
            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
213 214
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
215
                                    num_workers=num_workers,
216 217 218 219
                                    batch_size=BATCH_SIZE,
                                    places=[fluid.CPUPlace()] * 2,
                                    drop_last=True,
                                    return_list=True)
220 221 222 223 224 225 226

            for d in dataloader:
                assert isinstance(d, list)
                assert len(d) == 2
                assert isinstance(d[0], list)
                assert isinstance(d[1], list)

227 228 229 230 231 232
    def test_main(self):
        paddle.enable_static()
        for num_workers in [0, 2]:
            self.run_single_place(num_workers)
            self.run_multi_place(num_workers)

233

234
class RandomBatchedDataset(Dataset):
235

236 237 238 239 240 241 242 243 244 245
    def __init__(self, sample_num, class_num):
        self.sample_num = int(sample_num / BATCH_SIZE)
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        images = []
        labels = []
        for _ in range(BATCH_SIZE):
            image = np.random.random([IMAGE_SIZE]).astype('float32')
246 247
            label = np.random.randint(0, self.class_num - 1,
                                      (1, )).astype('int64')
248 249 250 251 252 253 254 255 256
            images.append(image)
            labels.append(label)
        return np.stack(images, axis=0), np.stack(labels, axis=0)

    def __len__(self):
        return self.sample_num


class TestStaticDataLoaderWithBatchedDataset(TestStaticDataLoader):
257

K
Kaipeng Deng 已提交
258
    def run_main(self, num_workers, places, persistent_workers):
259 260 261 262 263
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, image, label, loss = simple_fc_net_static()

            dataset = RandomBatchedDataset(SAMPLE_NUM, CLASS_NUM)
264 265 266 267 268 269 270 271
            dataloader = DataLoader(dataset,
                                    feed_list=[image, label],
                                    places=places,
                                    num_workers=num_workers,
                                    batch_size=None,
                                    return_list=False,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
272 273 274 275 276 277 278
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

            prog = fluid.CompiledProgram(main_prog)
            if len(places) > 1:
279 280
                prog = prog.with_data_parallel(loss_name=loss.name,
                                               places=places)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

            step_list = []
            loss_list = []
            start_t = time.time()
            for _ in six.moves.range(EPOCH_NUM):
                step = 0
                for d in dataloader:
                    assert len(d) == len(places), "{} != {}".format(
                        len(d), len(places))
                    for i, item in enumerate(d):
                        image = item['image']
                        label = item['label']
                        assert image.shape() == [BATCH_SIZE, IMAGE_SIZE]
                        assert label.shape() == [BATCH_SIZE, 1]
                        assert image._place()._equals(places[i])
                        assert label._place()._equals(places[i])
                    L, = exe.run(program=prog,
                                 feed=d,
                                 fetch_list=[loss],
                                 use_program_cache=True)
                    loss_list.append(np.mean(L))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret


315 316
if __name__ == '__main__':
    unittest.main()