fetch_v2_op.cc 9.1 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
class OpDesc;
class InferShapeContext;
template <typename T>
class EmptyGradOpMaker;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
}  // namespace paddle

namespace paddle {
namespace operators {

34
static void DeepCopy(const phi::DenseTensor &src_item,
W
wanghuancoder 已提交
35
                     const std::string &fetch_var_name,
36
                     phi::DenseTensor *dst_item) {
W
wanghuancoder 已提交
37 38 39
  if (src_item.IsInitialized() && src_item.numel() > 0) {
#ifdef PADDLE_WITH_MKLDNN
    // Conversion from MKL-DNN to Paddle
40
    if (src_item.layout() == phi::DataLayout::ONEDNN) {
41
      phi::DenseTensor out;
W
wanghuancoder 已提交
42 43
      // Convert to desired Paddle layout, apart from grads of filter
      // as params are not a subject to paddle's data_format
44
      phi::funcs::TransDataLayoutFromOneDNN(
45 46
          src_item.layout(),
          fetch_var_name == framework::GradVarName("Filter")
47
              ? phi::DataLayout::kNCHW
48
              : phi::OneDNNContext::tls().get_cur_paddle_data_layout(),
49 50 51
          src_item,
          &out,
          platform::CPUPlace());
52
      paddle::framework::TensorCopySync(out, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
53
    } else {
54 55
      paddle::framework::TensorCopySync(
          src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
56 57
    }
#else
58
    paddle::framework::TensorCopySync(src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#endif
  } else {
    // Not copy, if the src tensor is empty.
    dst_item->clear();
    dst_item->Resize({0});
  }
  dst_item->set_lod(src_item.lod());
}

class FetchV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}

 protected:
  framework::OpKernelType GetKernelTypeForVar(
76
      const std::string &var_name,
77
      const phi::DenseTensor &tensor,
W
wanghuancoder 已提交
78
      const framework::OpKernelType &expected_kernel_type) const override {
79 80 81
    if (!tensor.IsInitialized()) {
      return expected_kernel_type;
    }
82 83
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
W
wanghuancoder 已提交
84 85 86 87
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
88 89 90 91 92 93
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
      return framework::OpKernelType(framework::proto::VarType::FP32,
                                     platform::CPUPlace());
    }

94 95
    if (fetch_var->IsType<phi::DenseTensor>()) {
      auto &src_item = fetch_var->Get<phi::DenseTensor>();
96 97 98 99
      if (!src_item.IsInitialized()) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       platform::CPUPlace());
      }
100 101 102 103 104 105
    } else if (fetch_var->IsType<phi::SparseCooTensor>()) {
      auto &src_item = fetch_var->Get<phi::SparseCooTensor>();
      if (!src_item.initialized()) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       platform::CPUPlace());
      }
106 107 108 109 110 111 112 113
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      if (src_item.empty() || !src_item[0].IsInitialized()) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       platform::CPUPlace());
      }
    }

W
wanghuancoder 已提交
114 115
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
116
        platform::CPUPlace());
W
wanghuancoder 已提交
117 118 119 120 121 122 123 124 125 126 127
  }
};

class FetchV2Kernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto fetch_var_name = ctx.InputName("X");
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
      return;
    }
128
    PADDLE_ENFORCE_EQ(
129 130
        ctx.HasOutput("Out"),
        true,
131
        platform::errors::NotFound("Output(Out) of fetch_v2_op is not found."));
W
wanghuancoder 已提交
132 133 134 135
    auto *out_var = ctx.OutputVar("Out");

    int col = ctx.Attr<int>("col");
    PADDLE_ENFORCE_GE(
136 137
        col,
        0,
138 139 140 141 142
        platform::errors::InvalidArgument(
            "Expected the column index (the attribute 'col' of "
            "operator 'Fetch') of current fetching variable to be "
            "no less than 0. But received column index = %d.",
            col));
W
wanghuancoder 已提交
143 144 145 146 147 148 149

    auto *fetch_list = out_var->GetMutable<framework::FetchList>();

    if (static_cast<size_t>(col) >= fetch_list->size()) {
      fetch_list->resize(col + 1);
    }

150 151
    bool deepcopy = ctx.Attr<bool>("deepcopy");

152 153
    if (fetch_var->IsType<phi::DenseTensor>()) {
      auto &src_item = fetch_var->Get<phi::DenseTensor>();
154 155 156
      if (!src_item.IsInitialized()) {
        return;
      }
157
      auto *dst_item = &(PADDLE_GET(phi::DenseTensor, fetch_list->at(col)));
158 159 160
      bool check_place = platform::is_cpu_place(src_item.place()) ||
                         platform::is_cuda_pinned_place(src_item.place());
      PADDLE_ENFORCE_EQ(
161 162
          check_place,
          true,
163 164
          platform::errors::InvalidArgument("Tensor's place of input(X) must "
                                            "be CPUPlace or CUDAPinnedPlace."));
165 166 167 168
      if (deepcopy) {
        DeepCopy(src_item, fetch_var_name, dst_item);
      } else {
        dst_item->ShareDataWith(src_item);
A
Aurelius84 已提交
169
        dst_item->set_lod(src_item.lod());
170
      }
171 172 173 174 175 176
    } else if (fetch_var->IsType<phi::SparseCooTensor>()) {
      auto &src_item = fetch_var->Get<phi::SparseCooTensor>();
      if (!src_item.initialized()) {
        return;
      }
      fetch_list->at(col) = src_item;
W
wanghuancoder 已提交
177 178 179 180 181
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      framework::LoDTensorArray tmp(src_item.size());
      fetch_list->at(col) = tmp;
      auto &dst_item =
R
Ruibiao Chen 已提交
182
          PADDLE_GET(framework::LoDTensorArray, fetch_list->at(col));
W
wanghuancoder 已提交
183
      for (size_t i = 0; i < src_item.size(); ++i) {
184 185
        PADDLE_ENFORCE_EQ(platform::is_cpu_place(src_item[i].place()),
                          true,
186 187 188 189 190 191
                          platform::errors::InvalidArgument(
                              "Tensor's place of input(X) must be CPUPlace."));
        if (deepcopy) {
          DeepCopy(src_item[i], fetch_var_name, &dst_item[i]);
        } else {
          dst_item[i].ShareDataWith(src_item[i]);
A
Aurelius84 已提交
192
          dst_item[i].set_lod(src_item[i].lod());
193
        }
W
wanghuancoder 已提交
194 195 196 197 198 199 200 201 202
      }
    }
  }
};

class FetchV2OpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
203 204
             "(phi::DenseTensor) The resulted phi::DenseTensor which is "
             "expected to return "
W
wanghuancoder 已提交
205 206
             "to users.");
    AddOutput("Out",
207 208
              "(vector<phi::DenseTensor>) A fetching list of phi::DenseTensor "
              "which may have "
W
wanghuancoder 已提交
209 210
              "different dimension, shape and data type.");
    AddAttr<int>("col", "(int) The column index of fetching object.");
211 212
    AddAttr<bool>("deepcopy", "(bool) Whether deep copy is required.")
        .SetDefault(true);
W
wanghuancoder 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225
    AddComment(R"DOC(
FetchV2 Operator.
It should not be configured by users directly.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
226 227 228
    fetch_v2,
    ops::FetchV2Op,
    ops::FetchV2OpProtoMaker,
W
wanghuancoder 已提交
229 230 231
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
REGISTER_OP_CPU_KERNEL_FUNCTOR(fetch_v2,
                               float,
                               ops::FetchV2Kernel,
                               double,
                               ops::FetchV2Kernel,
                               int8_t,
                               ops::FetchV2Kernel,
                               uint8_t,
                               ops::FetchV2Kernel,
                               int,
                               ops::FetchV2Kernel,
                               int64_t,
                               ops::FetchV2Kernel,
                               bool,
                               ops::FetchV2Kernel,
                               paddle::platform::bfloat16,
                               ops::FetchV2Kernel,
                               paddle::platform::complex<float>,
                               ops::FetchV2Kernel,
                               paddle::platform::complex<double>,
                               ops::FetchV2Kernel,
                               plat::float16,
                               ops::FetchV2Kernel,
                               int16_t,
                               ops::FetchV2Kernel);