fetch_v2_op.cc 9.1 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
class OpDesc;
class InferShapeContext;
template <typename T>
class EmptyGradOpMaker;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
}  // namespace paddle

namespace paddle {
namespace operators {

34
static void DeepCopy(const phi::DenseTensor &src_item,
W
wanghuancoder 已提交
35
                     const std::string &fetch_var_name,
36
                     phi::DenseTensor *dst_item) {
W
wanghuancoder 已提交
37 38 39
  if (src_item.IsInitialized() && src_item.numel() > 0) {
#ifdef PADDLE_WITH_MKLDNN
    // Conversion from MKL-DNN to Paddle
40
    if (src_item.layout() == phi::DataLayout::ONEDNN) {
41
      phi::DenseTensor out;
W
wanghuancoder 已提交
42 43 44
      // Convert to desired Paddle layout, apart from grads of filter
      // as params are not a subject to paddle's data_format
      framework::innerTransDataLayoutFromMKLDNN(
45 46
          src_item.layout(),
          fetch_var_name == framework::GradVarName("Filter")
47
              ? phi::DataLayout::kNCHW
48 49
              : paddle::platform::MKLDNNDeviceContext::tls()
                    .get_cur_paddle_data_layout(),
50 51 52
          src_item,
          &out,
          platform::CPUPlace());
53
      paddle::framework::TensorCopySync(out, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
54
    } else {
55 56
      paddle::framework::TensorCopySync(
          src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
57 58
    }
#else
59
    paddle::framework::TensorCopySync(src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#endif
  } else {
    // Not copy, if the src tensor is empty.
    dst_item->clear();
    dst_item->Resize({0});
  }
  dst_item->set_lod(src_item.lod());
}

class FetchV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}

 protected:
  framework::OpKernelType GetKernelTypeForVar(
77
      const std::string &var_name,
78
      const phi::DenseTensor &tensor,
W
wanghuancoder 已提交
79
      const framework::OpKernelType &expected_kernel_type) const override {
80 81 82
    if (!tensor.IsInitialized()) {
      return expected_kernel_type;
    }
83 84
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
W
wanghuancoder 已提交
85 86 87 88
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
89 90 91 92 93 94
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
      return framework::OpKernelType(framework::proto::VarType::FP32,
                                     platform::CPUPlace());
    }

95 96
    if (fetch_var->IsType<phi::DenseTensor>()) {
      auto &src_item = fetch_var->Get<phi::DenseTensor>();
97 98 99 100
      if (!src_item.IsInitialized()) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       platform::CPUPlace());
      }
101 102 103 104 105 106
    } else if (fetch_var->IsType<phi::SparseCooTensor>()) {
      auto &src_item = fetch_var->Get<phi::SparseCooTensor>();
      if (!src_item.initialized()) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       platform::CPUPlace());
      }
107 108 109 110 111 112 113 114
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      if (src_item.empty() || !src_item[0].IsInitialized()) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       platform::CPUPlace());
      }
    }

W
wanghuancoder 已提交
115 116
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
117
        platform::CPUPlace());
W
wanghuancoder 已提交
118 119 120 121 122 123 124 125 126 127 128
  }
};

class FetchV2Kernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto fetch_var_name = ctx.InputName("X");
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
      return;
    }
129
    PADDLE_ENFORCE_EQ(
130 131
        ctx.HasOutput("Out"),
        true,
132
        platform::errors::NotFound("Output(Out) of fetch_v2_op is not found."));
W
wanghuancoder 已提交
133 134 135 136
    auto *out_var = ctx.OutputVar("Out");

    int col = ctx.Attr<int>("col");
    PADDLE_ENFORCE_GE(
137 138
        col,
        0,
139 140 141 142 143
        platform::errors::InvalidArgument(
            "Expected the column index (the attribute 'col' of "
            "operator 'Fetch') of current fetching variable to be "
            "no less than 0. But received column index = %d.",
            col));
W
wanghuancoder 已提交
144 145 146 147 148 149 150

    auto *fetch_list = out_var->GetMutable<framework::FetchList>();

    if (static_cast<size_t>(col) >= fetch_list->size()) {
      fetch_list->resize(col + 1);
    }

151 152
    bool deepcopy = ctx.Attr<bool>("deepcopy");

153 154
    if (fetch_var->IsType<phi::DenseTensor>()) {
      auto &src_item = fetch_var->Get<phi::DenseTensor>();
155 156 157
      if (!src_item.IsInitialized()) {
        return;
      }
158
      auto *dst_item = &(PADDLE_GET(phi::DenseTensor, fetch_list->at(col)));
159 160 161
      bool check_place = platform::is_cpu_place(src_item.place()) ||
                         platform::is_cuda_pinned_place(src_item.place());
      PADDLE_ENFORCE_EQ(
162 163
          check_place,
          true,
164 165
          platform::errors::InvalidArgument("Tensor's place of input(X) must "
                                            "be CPUPlace or CUDAPinnedPlace."));
166 167 168 169
      if (deepcopy) {
        DeepCopy(src_item, fetch_var_name, dst_item);
      } else {
        dst_item->ShareDataWith(src_item);
A
Aurelius84 已提交
170
        dst_item->set_lod(src_item.lod());
171
      }
172 173 174 175 176 177
    } else if (fetch_var->IsType<phi::SparseCooTensor>()) {
      auto &src_item = fetch_var->Get<phi::SparseCooTensor>();
      if (!src_item.initialized()) {
        return;
      }
      fetch_list->at(col) = src_item;
W
wanghuancoder 已提交
178 179 180 181 182
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      framework::LoDTensorArray tmp(src_item.size());
      fetch_list->at(col) = tmp;
      auto &dst_item =
R
Ruibiao Chen 已提交
183
          PADDLE_GET(framework::LoDTensorArray, fetch_list->at(col));
W
wanghuancoder 已提交
184
      for (size_t i = 0; i < src_item.size(); ++i) {
185 186
        PADDLE_ENFORCE_EQ(platform::is_cpu_place(src_item[i].place()),
                          true,
187 188 189 190 191 192
                          platform::errors::InvalidArgument(
                              "Tensor's place of input(X) must be CPUPlace."));
        if (deepcopy) {
          DeepCopy(src_item[i], fetch_var_name, &dst_item[i]);
        } else {
          dst_item[i].ShareDataWith(src_item[i]);
A
Aurelius84 已提交
193
          dst_item[i].set_lod(src_item[i].lod());
194
        }
W
wanghuancoder 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
      }
    }
  }
};

class FetchV2OpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(LoDTensor) The resulted LoDTensor which is expected to return "
             "to users.");
    AddOutput("Out",
              "(vector<LoDTensor>) A fetching list of LoDTensor which may have "
              "different dimension, shape and data type.");
    AddAttr<int>("col", "(int) The column index of fetching object.");
210 211
    AddAttr<bool>("deepcopy", "(bool) Whether deep copy is required.")
        .SetDefault(true);
W
wanghuancoder 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224
    AddComment(R"DOC(
FetchV2 Operator.
It should not be configured by users directly.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
225 226 227
    fetch_v2,
    ops::FetchV2Op,
    ops::FetchV2OpProtoMaker,
W
wanghuancoder 已提交
228 229 230
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
REGISTER_OP_CPU_KERNEL_FUNCTOR(fetch_v2,
                               float,
                               ops::FetchV2Kernel,
                               double,
                               ops::FetchV2Kernel,
                               int8_t,
                               ops::FetchV2Kernel,
                               uint8_t,
                               ops::FetchV2Kernel,
                               int,
                               ops::FetchV2Kernel,
                               int64_t,
                               ops::FetchV2Kernel,
                               bool,
                               ops::FetchV2Kernel,
                               paddle::platform::bfloat16,
                               ops::FetchV2Kernel,
                               paddle::platform::complex<float>,
                               ops::FetchV2Kernel,
                               paddle::platform::complex<double>,
                               ops::FetchV2Kernel,
                               plat::float16,
                               ops::FetchV2Kernel,
                               int16_t,
                               ops::FetchV2Kernel);