fetch_v2_op.cc 6.9 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
class OpDesc;
class InferShapeContext;
template <typename T>
class EmptyGradOpMaker;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

namespace paddle {
namespace operators {

39
static void DeepCopy(const framework::LoDTensor &src_item,
W
wanghuancoder 已提交
40
                     const std::string &fetch_var_name,
41
                     framework::LoDTensor *dst_item) {
W
wanghuancoder 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
  if (src_item.IsInitialized() && src_item.numel() > 0) {
#ifdef PADDLE_WITH_MKLDNN
    // Conversion from MKL-DNN to Paddle
    if (src_item.layout() == framework::DataLayout::kMKLDNN) {
      framework::Tensor out;
      // Convert to desired Paddle layout, apart from grads of filter
      // as params are not a subject to paddle's data_format
      framework::innerTransDataLayoutFromMKLDNN(
          src_item.layout(), fetch_var_name == framework::GradVarName("Filter")
                                 ? framework::DataLayout::kNCHW
                                 : paddle::platform::MKLDNNDeviceContext::tls()
                                       .get_cur_paddle_data_layout(),
          src_item, &out, platform::CPUPlace());
55
      TensorCopySync(out, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
56
    } else {
57
      TensorCopySync(src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
58 59
    }
#else
60
    TensorCopySync(src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#endif
  } else {
    // Not copy, if the src tensor is empty.
    dst_item->clear();
    dst_item->Resize({0});
  }
  dst_item->set_lod(src_item.lod());
}

class FetchV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
81
                                   tensor.place(), tensor.layout());
W
wanghuancoder 已提交
82 83 84 85 86 87
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
88
        platform::CPUPlace());
W
wanghuancoder 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  }
};

class FetchV2InferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SyncTypeAndDataType("X", "Out");
  }
};

class FetchV2Kernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto fetch_var_name = ctx.InputName("X");
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
      return;
    }
107 108 109
    PADDLE_ENFORCE_EQ(
        ctx.HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of fetch_v2_op is not found."));
W
wanghuancoder 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    auto *out_var = ctx.OutputVar("Out");

    int col = ctx.Attr<int>("col");
    PADDLE_ENFORCE_GE(
        col, 0, platform::errors::InvalidArgument(
                    "Expected the column index (the attribute 'col' of "
                    "operator 'Fetch') of current fetching variable to be "
                    "no less than 0. But received column index = %d.",
                    col));

    auto *fetch_list = out_var->GetMutable<framework::FetchList>();

    if (static_cast<size_t>(col) >= fetch_list->size()) {
      fetch_list->resize(col + 1);
    }

126 127
    bool deepcopy = ctx.Attr<bool>("deepcopy");

W
wanghuancoder 已提交
128 129 130
    if (fetch_var->IsType<framework::LoDTensor>()) {
      auto &src_item = fetch_var->Get<framework::LoDTensor>();
      auto *dst_item = &(BOOST_GET(framework::LoDTensor, fetch_list->at(col)));
131 132 133 134 135 136 137 138
      PADDLE_ENFORCE_EQ(platform::is_cpu_place(src_item.place()), true,
                        platform::errors::InvalidArgument(
                            "Tensor's place of input(X) must be CPUPlace."));
      if (deepcopy) {
        DeepCopy(src_item, fetch_var_name, dst_item);
      } else {
        dst_item->ShareDataWith(src_item);
      }
W
wanghuancoder 已提交
139 140 141 142 143 144 145
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      framework::LoDTensorArray tmp(src_item.size());
      fetch_list->at(col) = tmp;
      auto &dst_item =
          BOOST_GET(framework::LoDTensorArray, fetch_list->at(col));
      for (size_t i = 0; i < src_item.size(); ++i) {
146 147 148 149 150 151 152 153
        PADDLE_ENFORCE_EQ(platform::is_cpu_place(src_item[i].place()), true,
                          platform::errors::InvalidArgument(
                              "Tensor's place of input(X) must be CPUPlace."));
        if (deepcopy) {
          DeepCopy(src_item[i], fetch_var_name, &dst_item[i]);
        } else {
          dst_item[i].ShareDataWith(src_item[i]);
        }
W
wanghuancoder 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
      }
    }
  }
};

class FetchV2OpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(LoDTensor) The resulted LoDTensor which is expected to return "
             "to users.");
    AddOutput("Out",
              "(vector<LoDTensor>) A fetching list of LoDTensor which may have "
              "different dimension, shape and data type.");
    AddAttr<int>("col", "(int) The column index of fetching object.");
169 170
    AddAttr<bool>("deepcopy", "(bool) Whether deep copy is required.")
        .SetDefault(true);
W
wanghuancoder 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    AddComment(R"DOC(
FetchV2 Operator.

It should not be configured by users directly.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
    fetch_v2, ops::FetchV2Op, ops::FetchV2OpProtoMaker,
    ops::FetchV2InferVarType,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL_FUNCTOR(fetch_v2, float, ops::FetchV2Kernel, double,
                               ops::FetchV2Kernel, int, ops::FetchV2Kernel,
                               int64_t, ops::FetchV2Kernel, bool,
                               ops::FetchV2Kernel, plat::float16,
                               ops::FetchV2Kernel);