fetch_v2_op.cc 8.7 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
class OpDesc;
class InferShapeContext;
template <typename T>
class EmptyGradOpMaker;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
}  // namespace paddle

namespace paddle {
namespace operators {

34
static void DeepCopy(const framework::LoDTensor &src_item,
W
wanghuancoder 已提交
35
                     const std::string &fetch_var_name,
36
                     framework::LoDTensor *dst_item) {
W
wanghuancoder 已提交
37 38 39 40 41 42 43 44
  if (src_item.IsInitialized() && src_item.numel() > 0) {
#ifdef PADDLE_WITH_MKLDNN
    // Conversion from MKL-DNN to Paddle
    if (src_item.layout() == framework::DataLayout::kMKLDNN) {
      framework::Tensor out;
      // Convert to desired Paddle layout, apart from grads of filter
      // as params are not a subject to paddle's data_format
      framework::innerTransDataLayoutFromMKLDNN(
45 46 47 48 49
          src_item.layout(),
          fetch_var_name == framework::GradVarName("Filter")
              ? framework::DataLayout::kNCHW
              : paddle::platform::MKLDNNDeviceContext::tls()
                    .get_cur_paddle_data_layout(),
50 51 52
          src_item,
          &out,
          platform::CPUPlace());
53
      paddle::framework::TensorCopySync(out, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
54
    } else {
55 56
      paddle::framework::TensorCopySync(
          src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
57 58
    }
#else
59
    paddle::framework::TensorCopySync(src_item, platform::CPUPlace(), dst_item);
W
wanghuancoder 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#endif
  } else {
    // Not copy, if the src tensor is empty.
    dst_item->clear();
    dst_item->Resize({0});
  }
  dst_item->set_lod(src_item.lod());
}

class FetchV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}

 protected:
  framework::OpKernelType GetKernelTypeForVar(
77 78
      const std::string &var_name,
      const framework::Tensor &tensor,
W
wanghuancoder 已提交
79
      const framework::OpKernelType &expected_kernel_type) const override {
80 81 82
    if (!tensor.IsInitialized()) {
      return expected_kernel_type;
    }
83 84
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
W
wanghuancoder 已提交
85 86 87 88
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
      return framework::OpKernelType(framework::proto::VarType::FP32,
                                     platform::CPUPlace());
    }

    if (fetch_var->IsType<framework::LoDTensor>()) {
      auto &src_item = fetch_var->Get<framework::LoDTensor>();
      if (!src_item.IsInitialized()) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       platform::CPUPlace());
      }
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      if (src_item.empty() || !src_item[0].IsInitialized()) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       platform::CPUPlace());
      }
    }

W
wanghuancoder 已提交
109 110
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
111
        platform::CPUPlace());
W
wanghuancoder 已提交
112 113 114 115 116 117 118 119 120 121 122
  }
};

class FetchV2Kernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto fetch_var_name = ctx.InputName("X");
    auto *fetch_var = ctx.InputVar("X");
    if (fetch_var == nullptr) {
      return;
    }
123
    PADDLE_ENFORCE_EQ(
124 125
        ctx.HasOutput("Out"),
        true,
126
        platform::errors::NotFound("Output(Out) of fetch_v2_op is not found."));
W
wanghuancoder 已提交
127 128 129 130
    auto *out_var = ctx.OutputVar("Out");

    int col = ctx.Attr<int>("col");
    PADDLE_ENFORCE_GE(
131 132
        col,
        0,
133 134 135 136 137
        platform::errors::InvalidArgument(
            "Expected the column index (the attribute 'col' of "
            "operator 'Fetch') of current fetching variable to be "
            "no less than 0. But received column index = %d.",
            col));
W
wanghuancoder 已提交
138 139 140 141 142 143 144

    auto *fetch_list = out_var->GetMutable<framework::FetchList>();

    if (static_cast<size_t>(col) >= fetch_list->size()) {
      fetch_list->resize(col + 1);
    }

145 146
    bool deepcopy = ctx.Attr<bool>("deepcopy");

W
wanghuancoder 已提交
147 148
    if (fetch_var->IsType<framework::LoDTensor>()) {
      auto &src_item = fetch_var->Get<framework::LoDTensor>();
149 150 151
      if (!src_item.IsInitialized()) {
        return;
      }
W
wanghuancoder 已提交
152
      auto *dst_item = &(BOOST_GET(framework::LoDTensor, fetch_list->at(col)));
153 154 155
      bool check_place = platform::is_cpu_place(src_item.place()) ||
                         platform::is_cuda_pinned_place(src_item.place());
      PADDLE_ENFORCE_EQ(
156 157
          check_place,
          true,
158 159
          platform::errors::InvalidArgument("Tensor's place of input(X) must "
                                            "be CPUPlace or CUDAPinnedPlace."));
160 161 162 163
      if (deepcopy) {
        DeepCopy(src_item, fetch_var_name, dst_item);
      } else {
        dst_item->ShareDataWith(src_item);
A
Aurelius84 已提交
164
        dst_item->set_lod(src_item.lod());
165
      }
W
wanghuancoder 已提交
166 167 168 169 170 171 172
    } else {
      auto &src_item = fetch_var->Get<framework::LoDTensorArray>();
      framework::LoDTensorArray tmp(src_item.size());
      fetch_list->at(col) = tmp;
      auto &dst_item =
          BOOST_GET(framework::LoDTensorArray, fetch_list->at(col));
      for (size_t i = 0; i < src_item.size(); ++i) {
173 174
        PADDLE_ENFORCE_EQ(platform::is_cpu_place(src_item[i].place()),
                          true,
175 176 177 178 179 180
                          platform::errors::InvalidArgument(
                              "Tensor's place of input(X) must be CPUPlace."));
        if (deepcopy) {
          DeepCopy(src_item[i], fetch_var_name, &dst_item[i]);
        } else {
          dst_item[i].ShareDataWith(src_item[i]);
A
Aurelius84 已提交
181
          dst_item[i].set_lod(src_item[i].lod());
182
        }
W
wanghuancoder 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
      }
    }
  }
};

class FetchV2OpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(LoDTensor) The resulted LoDTensor which is expected to return "
             "to users.");
    AddOutput("Out",
              "(vector<LoDTensor>) A fetching list of LoDTensor which may have "
              "different dimension, shape and data type.");
    AddAttr<int>("col", "(int) The column index of fetching object.");
198 199
    AddAttr<bool>("deepcopy", "(bool) Whether deep copy is required.")
        .SetDefault(true);
W
wanghuancoder 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212
    AddComment(R"DOC(
FetchV2 Operator.
It should not be configured by users directly.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
213 214 215
    fetch_v2,
    ops::FetchV2Op,
    ops::FetchV2OpProtoMaker,
W
wanghuancoder 已提交
216 217 218
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
REGISTER_OP_CPU_KERNEL_FUNCTOR(fetch_v2,
                               float,
                               ops::FetchV2Kernel,
                               double,
                               ops::FetchV2Kernel,
                               int8_t,
                               ops::FetchV2Kernel,
                               uint8_t,
                               ops::FetchV2Kernel,
                               int,
                               ops::FetchV2Kernel,
                               int64_t,
                               ops::FetchV2Kernel,
                               bool,
                               ops::FetchV2Kernel,
                               paddle::platform::bfloat16,
                               ops::FetchV2Kernel,
                               paddle::platform::complex<float>,
                               ops::FetchV2Kernel,
                               paddle::platform::complex<double>,
                               ops::FetchV2Kernel,
                               plat::float16,
                               ops::FetchV2Kernel,
                               int16_t,
                               ops::FetchV2Kernel);