test_cos_sim_op.py 4.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xinghai Sun 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest
18 19
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
X
Xinghai Sun 已提交
20 21


Q
qijun 已提交
22
class TestCosSimOp(OpTest):
X
Xinghai Sun 已提交
23
    def setUp(self):
Q
qijun 已提交
24
        self.op_type = "cos_sim"
X
Xinghai Sun 已提交
25
        self.inputs = {
26
            'X': np.random.random((6, 20)).astype("float32"),
27
            'Y': np.random.random((6, 20)).astype("float32"),
28 29 30
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
31 32 33 34 35
        expect_out = (
            (self.inputs['X'] * self.inputs['Y']).sum(axis=1)
            / expect_x_norm
            / expect_y_norm
        )
36 37 38
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
39
            'Out': np.expand_dims(expect_out, 1),
X
Xinghai Sun 已提交
40 41
        }

Q
qijun 已提交
42 43
    def test_check_output(self):
        self.check_output()
X
Xinghai Sun 已提交
44

Q
qijun 已提交
45
    def test_check_grad_normal(self):
46
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.06)
X
Xinghai Sun 已提交
47

Q
qijun 已提交
48
    def test_check_grad_ingore_x(self):
49 50 51
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.06, no_grad_set=set("X")
        )
52

53
    def test_check_grad_ingore_y(self):
54 55 56
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Y')
        )
57

X
Xinghai Sun 已提交
58

59
class TestCosSimOp2(TestCosSimOp):
60
    def setUp(self):
61
        self.op_type = "cos_sim"
62
        self.inputs = {
Z
zhupengyang 已提交
63
            'X': np.random.random((6, 100)).astype("float32"),
64
            'Y': np.random.random((1, 100)).astype("float32"),
65 66 67
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
68 69 70 71 72
        expect_out = (
            (self.inputs['X'] * self.inputs['Y']).sum(axis=1)
            / expect_x_norm
            / expect_y_norm
        )
73 74 75
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
76
            'Out': np.expand_dims(expect_out, 1),
77 78 79
        }


80
class TestCosSimOp3(TestCosSimOp):
81
    def setUp(self):
82
        self.op_type = "cos_sim"
83
        self.inputs = {
Z
zhupengyang 已提交
84
            'X': np.random.random((6, 5, 4)).astype("float32"),
85
            'Y': np.random.random((6, 5, 4)).astype("float32"),
86 87 88
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2))
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2))
89 90 91 92 93
        expect_out = (
            (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2))
            / expect_x_norm
            / expect_y_norm
        )
94 95 96
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
97
            'Out': np.expand_dims(expect_out, 1),
98 99 100
        }


101
class TestCosSimOp4(TestCosSimOp):
102
    def setUp(self):
103
        self.op_type = "cos_sim"
104
        self.inputs = {
Z
zhupengyang 已提交
105
            'X': np.random.random((6, 5, 20)).astype("float32"),
106
            'Y': np.random.random((1, 5, 20)).astype("float32"),
107 108 109
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2))
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2))
110 111 112 113 114
        expect_out = (
            (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2))
            / expect_x_norm
            / expect_y_norm
        )
115 116 117
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
118
            'Out': np.expand_dims(expect_out, 1),
119 120 121
        }


122 123 124 125
class TestCosSimOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of batch_norm must be Variable.
126 127 128 129 130 131
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
            )
            x2 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
            )
132 133 134 135 136 137 138 139
            self.assertRaises(TypeError, fluid.layers.cos_sim, x1, x2)

            # the input dtype of batch_norm must be float32
            x3 = fluid.layers.data(name='x3', shape=[3, 4, 5, 6], dtype="int32")
            x4 = fluid.layers.data(name='x4', shape=[3, 4, 5, 6], dtype="int64")
            self.assertRaises(TypeError, fluid.layers.cos_sim, x3, x4)


X
Xinghai Sun 已提交
140 141
if __name__ == '__main__':
    unittest.main()