# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle.fluid as fluid from paddle.fluid import Program, program_guard class TestCosSimOp(OpTest): def setUp(self): self.op_type = "cos_sim" self.inputs = { 'X': np.random.random((6, 20)).astype("float32"), 'Y': np.random.random((6, 20)).astype("float32"), } expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1) expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1) expect_out = ( (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / expect_x_norm / expect_y_norm ) self.outputs = { 'XNorm': np.expand_dims(expect_x_norm, 1), 'YNorm': np.expand_dims(expect_y_norm, 1), 'Out': np.expand_dims(expect_out, 1), } def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.06) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', max_relative_error=0.06, no_grad_set=set("X") ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Y') ) class TestCosSimOp2(TestCosSimOp): def setUp(self): self.op_type = "cos_sim" self.inputs = { 'X': np.random.random((6, 100)).astype("float32"), 'Y': np.random.random((1, 100)).astype("float32"), } expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1) expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1) expect_out = ( (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / expect_x_norm / expect_y_norm ) self.outputs = { 'XNorm': np.expand_dims(expect_x_norm, 1), 'YNorm': np.expand_dims(expect_y_norm, 1), 'Out': np.expand_dims(expect_out, 1), } class TestCosSimOp3(TestCosSimOp): def setUp(self): self.op_type = "cos_sim" self.inputs = { 'X': np.random.random((6, 5, 4)).astype("float32"), 'Y': np.random.random((6, 5, 4)).astype("float32"), } expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2)) expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2)) expect_out = ( (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2)) / expect_x_norm / expect_y_norm ) self.outputs = { 'XNorm': np.expand_dims(expect_x_norm, 1), 'YNorm': np.expand_dims(expect_y_norm, 1), 'Out': np.expand_dims(expect_out, 1), } class TestCosSimOp4(TestCosSimOp): def setUp(self): self.op_type = "cos_sim" self.inputs = { 'X': np.random.random((6, 5, 20)).astype("float32"), 'Y': np.random.random((1, 5, 20)).astype("float32"), } expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2)) expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2)) expect_out = ( (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2)) / expect_x_norm / expect_y_norm ) self.outputs = { 'XNorm': np.expand_dims(expect_x_norm, 1), 'YNorm': np.expand_dims(expect_y_norm, 1), 'Out': np.expand_dims(expect_out, 1), } class TestCosSimOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # the input of batch_norm must be Variable. x1 = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace() ) x2 = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace() ) self.assertRaises(TypeError, fluid.layers.cos_sim, x1, x2) # the input dtype of batch_norm must be float32 x3 = fluid.layers.data(name='x3', shape=[3, 4, 5, 6], dtype="int32") x4 = fluid.layers.data(name='x4', shape=[3, 4, 5, 6], dtype="int64") self.assertRaises(TypeError, fluid.layers.cos_sim, x3, x4) if __name__ == '__main__': unittest.main()