sharding_optimizer.py 82.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16

W
wangxiaoning 已提交
17 18
from paddle.fluid import core
from paddle.fluid.optimizer import PipelineOptimizer
19 20 21 22 23 24
from paddle.static import (
    create_global_var,
    default_startup_program,
    device_guard,
)
from paddle.utils import unique_name
25

26 27 28 29 30 31 32 33 34 35
from ..utils.log_util import logger
from .common import (
    OP_ROLE_KEY,
    OP_ROLE_VAR_KEY,
    CollectiveHelper,
    OpRole,
    is_backward_op,
    is_optimizer_op,
    is_update_op,
)
36
from .meta_optimizer_base import MetaOptimizerBase
37
from .sharding import utils
38 39 40 41
from .sharding.fp16_helper import FP16Utils
from .sharding.gradient_clip_helper import GradientClipHelper
from .sharding.offload_helper import OffloadHelper
from .sharding.prune import ProgramDeps
42
from .sharding.shard import ProgramSegment, Shard
43 44
from .sharding.utils import (
    get_first_optimize_op_idx,
45
    get_grad_device,
46
    get_var_size,
47 48 49 50 51
    insert_allreduce_ops,
    insert_broadcast_ops,
    insert_cast_ops,
    insert_fill_constant_ops,
    insert_reduce_ops,
52
    insert_scale_loss_grad_ops,
53 54
    insert_sync_calc_op,
    insert_sync_comm_ops,
55
)
56
from .sharding.weight_decay_helper import WeightDecayHelper
57

58
__all__ = []
59 60 61


class ShardingOptimizer(MetaOptimizerBase):
62 63
    """Sharding Optimizer."""

64
    def __init__(self, optimizer):
65
        super().__init__(optimizer)
66 67 68 69
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
70 71
            "LarsOptimizer",
            "LambOptimizer",
M
minghaoBD 已提交
72
            "ASPOptimizer",
73 74
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
75
        ]
76 77 78
        self.meta_optimizers_black_list = [
            "GraphExecutionOptimizer",
        ]
79 80 81 82 83 84 85 86 87
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
88 89 90 91
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
92 93 94 95 96 97 98 99 100 101 102 103 104 105

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
106
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
107

W
WangXi 已提交
108
    def _get_sharding_segment_strategy(self):
109
        """get
W
WangXi 已提交
110 111 112 113 114 115 116 117 118
        self._sharding_segment_strategy
        1. if by_size:    self._broadcast_MB
        2. if by_anchors: self._sharding_segment_anchors
                          self._backward_remain_anchors
                          self._forward_remain_anchors
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        segment_strategy = str(sharding_configs["sharding_segment_strategy"])
119

W
WangXi 已提交
120 121
        if segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = sharding_configs["segment_broadcast_MB"]
122 123 124
            assert (
                self._broadcast_MB > 0
            ), "segment size should larger than zero !"
W
WangXi 已提交
125 126
        elif segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = sharding_configs["segment_anchors"]
127 128 129
            assert (
                len(self._sharding_segment_anchors) > 0
            ), "you should set the sharding segment anchors !"
130 131 132 133 134
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
135 136 137
                    str(segment_strategy)
                )
            )
W
WangXi 已提交
138 139 140
        self._sharding_segment_strategy = segment_strategy

    def _get_hybrid_degree(self):
141
        """get
W
WangXi 已提交
142 143 144 145 146 147 148 149
        self.hybrid_dp
        self.sharding_degree
        self.mp_degree
        self.pp_degree
        self.dp_degree
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
150

151
        # parallelism
W
WangXi 已提交
152 153 154 155 156 157 158
        sharding_degree = int(sharding_configs["sharding_degree"])
        mp_degree = int(sharding_configs["mp_degree"])
        pp_degree = int(sharding_configs["pp_degree"])
        dp_degree = int(sharding_configs['dp_degree'])
        global_world_size = self.role_maker._worker_num()

        assert sharding_degree > 0, "sharding degree must be larger than zero"
159 160
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
W
WangXi 已提交
161 162 163
        if pp_degree > 1:
            assert strategy.pipeline is True

L
lilong12 已提交
164
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
165 166 167 168 169 170 171 172
            assert pp_degree == 2, (
                "For manually set pipeline, only " "pp_degree = 2 is supported."
            )
            assert (
                global_world_size == mp_degree * sharding_degree * dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                global_world_size, mp_degree, sharding_degree, dp_degree
            )
L
lilong12 已提交
173
        else:
174 175 176 177 178 179 180 181 182 183
            assert (
                global_world_size
                == mp_degree * sharding_degree * pp_degree * dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
                global_world_size,
                mp_degree,
                sharding_degree,
                pp_degree,
                dp_degree,
            )
184

J
JZ-LIANG 已提交
185
        # FIXME (JZ-LIANG) deprecated hybrid_dp
W
WangXi 已提交
186
        if sharding_configs["hybrid_dp"]:
187
            logger.warning(
W
WangXi 已提交
188
                "[hybrid_dp] API setting is deprecated. Now when "
189 190
                "dp_degree >= 2, its will be in hybrid dp mode automatically"
            )
W
WangXi 已提交
191 192 193 194 195 196 197 198 199
            assert dp_degree >= 1

        self.hybrid_dp = True if dp_degree > 1 else False
        self.sharding_degree = sharding_degree
        self.mp_degree = mp_degree
        self.pp_degree = pp_degree
        self.dp_degree = dp_degree

    def _get_hybrid_dp_mode(self):
200
        """get
201 202
        self.hybrid_dp_mode = 'pp_hybrid_dp' or 'sharding_hybrid_dp'
        self.gradient_merge_mode = 'pp_gm' or 'sharding_gm'
W
WangXi 已提交
203 204
        self._gradient_merge_acc_step
        self.pp_allreduce_in_optimize
205
        self._optimizer_sharding
W
WangXi 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs

        # NOTE (JZ-LIANG)
        # There 2 kind of modes for gradient-merge and hybrid-dp in mixed parallelism [sharding] and [pipeline].
        # We distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place
        # according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment
        #           to overlap with bw calc, conduct every micro step.
        # pipeline: communication across nodes, and therefore should insert in update segment,
        #           conduct just once per global step.
        dp_mode = None
219 220 221
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            if self.pp_degree > 1:
W
WangXi 已提交
222
                dp_mode = "pp_hybrid_dp"
223
            else:
224 225
                assert self.sharding_degree > 1, (
                    "by now we only support five kind of hybrid dp: sharding_hybrid_dp, "
W
WangXi 已提交
226
                    "mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
227
                )
W
WangXi 已提交
228
                dp_mode = "sharding_hybrid_dp"
229

230
        # gradient merge
W
WangXi 已提交
231 232
        gm_mode = None
        gm_acc_step = int(sharding_configs["gradient_merge_acc_step"])
233
        if self.pp_degree <= 1:
W
WangXi 已提交
234
            gm_mode = "sharding_gm"
235 236
            self._grad2merged_grad = dict()
        else:
W
WangXi 已提交
237 238
            gm_mode = "pp_gm"
            gm_acc_step = strategy.pipeline_configs['accumulate_steps']
239
            gradient_scale_configs = strategy.gradient_scale_configs
240 241 242 243 244 245 246
            assert gradient_scale_configs['scale_strategy'] == 'avg', (
                'For pipeline mode, the '
                'gradient scale mode should '
                'be "avg", but got {}'.format(
                    gradient_scale_configs['scale_strategy']
                )
            )
247 248 249 250
            # Note (Yuang Liu): this avg_loss flag determines where to do the average op for grad merge.
            # If True, will do sum firstly for gradient merge, then do scale by gm_acc_step.
            # If False, will scale loss by gm_acc_step first, then do sum for gradient merge.
            self.scale_gradient = gradient_scale_configs['scale_gradient']
W
WangXi 已提交
251
        if gm_acc_step > 1:
252 253 254 255 256
            logger.info(
                "Gradient merge in [{}], acc step = [{}]".format(
                    gm_mode, gm_acc_step
                )
            )
257

258 259 260
        optimizer_sharding = False
        # TODO(wangxi): need support dp_as_opt_sharding with sharding
        #               need support without pp in future
261 262 263 264 265 266
        if (
            self.sharding_degree == 1
            and self.dp_degree > 1
            and sharding_configs['_dp_as_optimizer_sharding']
            and self.pp_degree > 1
        ):
267 268
            optimizer_sharding = True

W
WangXi 已提交
269 270 271
        self.hybrid_dp_mode = dp_mode
        self.gradient_merge_mode = gm_mode
        self._gradient_merge_acc_step = gm_acc_step
272
        self._optimizer_sharding = optimizer_sharding
273 274

        # this feature is design for ascend, and should NOT be used in GPU training
W
WangXi 已提交
275
        self.pp_allreduce_in_optimize = sharding_configs[
276 277
            "pp_allreduce_in_optimize"
        ]
278

279 280 281
    def _inner_opt_minimize(
        self, loss, startup_program, parameter_list, no_grad_set
    ):
W
WangXi 已提交
282 283
        pipeline_configs = self.user_defined_strategy.pipeline_configs

284 285
        if self.inner_opt is None:
            raise ValueError(
286 287
                "self.inner_opt of ShardingOptimizer should not be None."
            )
288 289

        if self.pp_degree > 1:
W
wangxiaoning 已提交
290
            pp_optimizer = PipelineOptimizer(
291 292
                self.inner_opt, self._gradient_merge_acc_step
            )
W
WangXi 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
            self._pp_optimizer = pp_optimizer

            global_rank = self.role_maker._worker_index()
            schedule_mode = pipeline_configs['schedule_mode']

            pipeline_opt = {
                'schedule_mode': schedule_mode,
                'micro_batch_size': pipeline_configs['micro_batch_size'],
                'local_rank': self.pp_rank,
                'global_rank': global_rank,
                'use_sharding': True,
                # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
                'ring_id': 20,
                'global_ring_id': 3,
                'mp_degree': self.mp_degree,
                'mp_rank': global_rank % self.mp_degree,
309
                'scale_gradient': self.scale_gradient,
W
WangXi 已提交
310
            }
311 312
            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
313

314 315 316 317 318 319 320 321 322
            (
                optimize_ops,
                params_grads,
                program_list,
                self.pipeline_pair,
                self.pp_ring_map,
            ) = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set
            )
W
WangXi 已提交
323
            assert self.pp_degree == len(program_list)
324 325
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
326 327
                loss, startup_program, parameter_list, no_grad_set
            )
328 329 330

        if startup_program is None:
            startup_program = default_startup_program()
331 332 333

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
W
WangXi 已提交
334
            print("pp_rank:", self.pp_rank)
L
lilong12 已提交
335
            if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
336 337 338
                main_program = program_list[
                    int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
                ]
L
lilong12 已提交
339 340
            else:
                main_program = program_list[self.pp_rank]
341 342 343 344 345 346 347 348 349 350 351
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads
        else:
            main_block = loss.block

352 353 354 355
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

356 357 358 359 360
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

W
WangXi 已提交
361
        return optimize_ops, params_grads
362

W
WangXi 已提交
363
    def _apply_sharding_pass(self, params_grads):
364 365
        if self.sharding_degree == 1:
            return
W
WangXi 已提交
366 367 368

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
369

W
WangXi 已提交
370
        # step1: build shard
371 372 373
        self._build_shard(
            params_grads, self.sharding_rank, self.sharding_degree
        )
374

W
WangXi 已提交
375 376
        # step2: split_program
        self._split_program(main_block)
377

W
WangXi 已提交
378 379 380 381
        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()
382

W
WangXi 已提交
383
        # step4: remove unneeded ops and vars from block
384
        self._prune_main_program(
385 386 387 388
            main_block,
            self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id],
        )
389 390 391
        self._prune_startup_program(startup_block, self._shard)

    def _apply_opt_sharding_pass(self, params_grads):
392 393 394
        """outer dp as optimizer sharding"""
        if self._optimizer_sharding is False:
            return
395 396 397

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
398

399 400 401 402 403 404 405 406 407
        # step1: build shard
        self._build_shard(params_grads, self.dp_rank, self.dp_degree)

        # NOTE(wangxi): prune_main_program will prune cast if not add this
        for param, grad in params_grads:
            self._reduced_grads_to_param[grad.name] = param.name

        # step4: remove unneeded ops and vars from block
        self._prune_main_program(
408 409 410 411
            main_block,
            self._shard,
            [self.mp_ring_id, self.pp_ring_id, self.dp_ring_id],
        )
412 413 414
        self._prune_startup_program(startup_block, self._shard)

    def _insert_allreduce_for_pp(self, params_grads):
415 416
        if self.pp_degree == 1:
            return
417

W
WangXi 已提交
418
        strategy = self.user_defined_strategy
419
        sharding_configs = strategy.sharding_configs
420

W
WangXi 已提交
421 422 423 424 425 426 427 428 429 430 431 432
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # sharding-pp related logic
        # pp_optimizer._rename_gradient_var_name(main_block)
        # crop ops
        if self.sharding_degree > 1:
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
433 434
                        main_block._remove_op(idx)

W
WangXi 已提交
435
            for idx, op in reversed(list(enumerate(main_block.ops))):
436 437
                if op.type != 'cast':
                    continue
W
WangXi 已提交
438
                in_name = op.input_arg_names[0]
439 440 441
                if in_name not in self._params:
                    continue
                # if self._shard.has_param(param_name): continue
W
WangXi 已提交
442 443 444
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)

445 446 447 448 449
        if self._optimizer_sharding:
            # TODO(wangxi): support fp16_allreduce with optimizer sharding
            strategy.fp16_allreduce = False

        shard = self._shard if self._optimizer_sharding else None
W
WangXi 已提交
450
        accumulated_grad_names = self._pp_optimizer._accumulate_gradients(
451 452
            main_block, strategy=strategy, shard=shard
        )
453 454

        len_of_ops = len(main_block.ops)
455 456
        if self.scale_gradient:
            self._avg_grad_merge_after_sum(main_block, accumulated_grad_names)
457 458
        first_optimize_op_index = get_first_optimize_op_idx(main_block)

W
WangXi 已提交
459
        if self.pp_allreduce_in_optimize:
460 461 462
            logger.info(
                "Pipeline Persistable grad is {}".format(accumulated_grad_names)
            )
463 464 465 466
            # FIXME(wangxi): accumulated_grad get from pipeline is not
            #  include sharding's param@BroadCast grad when
            #  pp_allreduce_in_optimize
            accumulated_grad_names = insert_reduce_ops(
W
WangXi 已提交
467 468 469 470 471 472
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_grad_names,
                self._shard,
                core.op_proto_and_checker_maker.OpRole.Optimize,
473
                use_calc_stream=True,
474 475
                rank=self.sharding_rank,
            )
476 477

            logger.info("PP-Sharding grad is {}".format(accumulated_grad_names))
478
            first_optimize_op_index += len(main_block.ops) - len_of_ops
479 480
            len_of_ops = len(main_block.ops)

481 482 483 484 485 486 487 488 489 490
        if self._optimizer_sharding:
            accumulated_grad_names = utils.insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
491 492
                strategy=strategy,
            )
493
            logger.info(
494 495 496
                "Optimizer grad in this rank {}".format(accumulated_grad_names)
            )
            first_optimize_op_index += len(main_block.ops) - len_of_ops
497 498
            len_of_ops = len(main_block.ops)

499 500
            # NOTE(wangxi): we fused after optimize_cast
            optimize_cast = sharding_configs['optimize_cast']
501 502 503
            optimizer_param = utils.insert_broadcast_param_ops(
                main_block,
                len_of_ops,
504 505
                self.dp_ring_id,
                [x[0].name for x in params_grads],
506 507 508 509
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
510 511
                strategy=None if optimize_cast else strategy,
            )
512
            logger.info(
513 514
                "Optimizer param in this rank {}".format(optimizer_param)
            )
515
            if not strategy.fuse_grad_merge and not optimize_cast:
516 517
                assert len(accumulated_grad_names) == len(optimizer_param)
        elif self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
518 519 520 521 522 523 524
            insert_allreduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                core.op_proto_and_checker_maker.OpRole.Optimize,
                use_calc_stream=True,
525 526 527
                user_defined_strategy=strategy,
            )
            first_optimize_op_index += len(main_block.ops) - len_of_ops
528 529 530
            len_of_ops = len(main_block.ops)

        # FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
531

532
    def _avg_grad_merge_after_sum(self, main_block, accumulated_grad_names):
533 534 535 536 537 538
        if (
            self.user_defined_strategy.amp
            and self.user_defined_strategy.amp_configs[
                'use_dynamic_loss_scaling'
            ]
        ):
539 540 541 542 543 544 545 546 547 548
            # For AMP, if using dynamic loss scaling the avg
            # operation can be simple done by modify the LossScaling op.
            for idx, op in enumerate(main_block.ops):
                if op.type == 'check_finite_and_unscale':
                    loss_scale_name = op.input('Scale')[0]
                    loss_scaling_var = main_block.var(loss_scale_name)
                    loss_scale_tmp_var_name = loss_scale_name + '@TMP'
                    loss_scale_tmp_var = main_block.create_var(
                        name=loss_scale_tmp_var_name,
                        shape=loss_scaling_var.shape,
549 550
                        dtype=loss_scaling_var.dtype,
                    )
551 552 553 554 555 556 557 558 559
                    main_block._insert_op_without_sync(
                        idx,
                        type='scale',
                        inputs={'X': loss_scaling_var},
                        outputs={'Out': loss_scale_tmp_var},
                        attrs={
                            'scale': self._gradient_merge_acc_step,
                            'bias': 0.0,
                            'bias_after_scale': False,
560 561 562
                            OP_ROLE_KEY: OpRole.Optimize,
                        },
                    )
563 564 565 566 567 568 569 570 571 572
                    op._rename_input(loss_scale_name, loss_scale_tmp_var_name)
                    break
        else:
            # For pp, do the avg operation for gradient merge after merging
            # the gradient to meet the logic for gradient merge under pure dp.
            tmp_first_opt_idx = None
            for idx, op in enumerate(main_block.ops):
                if is_optimizer_op(op) and op.type != 'c_sync_comm_stream':
                    tmp_first_opt_idx = idx
                    break
573 574 575
            assert (
                tmp_first_opt_idx is not None
            ), 'Occurs some errors, no optimize ops'
576 577 578 579 580 581 582 583 584 585
            for grad in accumulated_grad_names:
                main_block._insert_op_without_sync(
                    tmp_first_opt_idx,
                    type='scale',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={
                        'scale': 1.0 / self._gradient_merge_acc_step,
                        'bias': 0.0,
                        'bias_after_scale': False,
586 587 588
                        OP_ROLE_KEY: OpRole.Optimize,
                    },
                )
589

W
WangXi 已提交
590
    def _adapt_amp_clip_without_sharding(self):
591 592
        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
593 594 595 596
        if self.sharding_degree > 1:
            return
        if self._optimizer_sharding:
            return
597

W
WangXi 已提交
598 599 600 601
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # amp inf_var & clip global_norm_var
602

603 604 605 606 607
        rings = [self.mp_ring_id, self.pp_ring_id]
        # FIXME(wangxi): some problem with NPU found_finite, need sync with DP
        if core.is_compiled_with_npu():
            rings += [self.dp_ring_id]
        FP16Utils.sync_amp_check_nan_inf(main_block, rings)
608

W
WangXi 已提交
609
        gradientclip_helper = GradientClipHelper(None)
610 611 612
        gradientclip_helper.sync_global_norm(
            main_block, [self.mp_ring_id, self.pp_ring_id], self.mp_rank
        )
W
WangXi 已提交
613 614 615 616 617

    def _insert_loss_grad_scale_op(self):
        main_block = self._main_program.global_block()

        # step6: loss div dp_degree
618 619 620
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
621
            insert_scale_loss_grad_ops(main_block, scale=global_dp_degree)
622

623 624
        main_block._sync_with_cpp()

625
    def _apply_optimize_offload_pass(self, params_grads):
W
WangXi 已提交
626 627 628 629 630
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

631
        mp_ring_id = self.mp_ring_id if self.mp_degree > 1 else None
632
        dp_ring_id = self.dp_ring_id if self.dp_degree > 1 else None
633 634 635
        offload_helper = OffloadHelper(
            mp_ring_id=mp_ring_id, dp_ring_id=dp_ring_id
        )
636

W
WangXi 已提交
637 638 639 640
        # optimize offload should be enable while gradient merge is enable and
        # acc_step is quite large (e.g. >> 100). Since its memcpy could not be
        # overlap with calc, otherwise it will slower down training severely.
        if sharding_configs["optimize_offload"]:
641
            logger.info("Sharding with optimize offload !")
642
            offload_helper.offload(main_block, startup_block)
643
            # The optimize_cast is already included in offload_fp32param
644
            offload_helper.offload_fp32param(main_block, startup_block)
645 646 647 648
        elif sharding_configs['optimize_cast']:
            logger.info("Sharding with optimize cast !")
            # NOTE(wangxi): optimize_cast will persist fp16 param, it
            # will take more memory, but will be faster. Trade space for time.
649 650
            if self._optimizer_sharding:
                offload_helper.opt_sharding_cast_fp32param(
651 652
                    main_block, startup_block, [x[0].name for x in params_grads]
                )
653
                # NOTE(wangxi): fused after optimize_cast
654 655 656
                utils.fuse_opt_broadcast_param_ops(
                    main_block, dp_ring_id, self._shard, strategy=strategy
                )
657
            else:
658
                offload_helper.cast_fp32param_in_optimize(
659 660
                    main_block, startup_block
                )
661

W
WangXi 已提交
662 663 664
    def _dump_program_for_debug(self):
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
665 666 667
        with open(
            "start_sharding_%d" % self.role_maker._worker_index(), 'w'
        ) as f:
W
WangXi 已提交
668
            f.writelines(str(startup_block.program))
669 670 671
        with open(
            "main_sharding_%d" % self.role_maker._worker_index(), 'w'
        ) as f:
W
WangXi 已提交
672 673
            f.writelines(str(main_block.program))

674 675 676
    def minimize_impl(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
W
WangXi 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1

        self._get_sharding_segment_strategy()
        self._get_hybrid_degree()
        self._get_hybrid_dp_mode()

        # config sharding & dp groups
        self._build_groups()

        # inner optimize minimize
        optimize_ops, params_grads = self._inner_opt_minimize(
691 692
            loss, startup_program, parameter_list, no_grad_set
        )
W
WangXi 已提交
693 694 695 696 697

        self._init_comm()

        self._apply_sharding_pass(params_grads)

698 699 700
        self._apply_opt_sharding_pass(params_grads)

        self._insert_allreduce_for_pp(params_grads)
W
WangXi 已提交
701 702 703 704 705 706

        self._adapt_amp_clip_without_sharding()

        # loss div dp_degree
        self._insert_loss_grad_scale_op()

707
        # apply optimize offload or optimize cast
708
        self._apply_optimize_offload_pass(params_grads)
W
WangXi 已提交
709

710
        # step6: (optional) sharding gradient merge
W
WangXi 已提交
711
        self._sharding_gradient_merge()
712 713 714 715 716 717

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
718

W
WangXi 已提交
719 720 721
        # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp
        # init param broadcast should be called after startup pruning
        self._initialization_broadcast()
722

723 724 725 726
        # NOTE(wangxi): if param is not persistable, program.clone will
        #  failed, so we remove no persistable param, recreate param as a var
        self._recreate_not_persist_param_as_var()

W
WangXi 已提交
727
        self._dump_program_for_debug()
728

729 730 731
        # GPU need to wait server ready, GPU and NPU is Layered connection
        if not core.is_compiled_with_npu():
            self._wait()
732 733
        return optimize_ops, params_grads

734 735 736 737 738 739
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
L
lilong12 已提交
740
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
741 742 743 744 745 746 747 748 749
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                pp_group_endpoints,
                pp_rank,
                ring_id,
                False,
                sync=False,
            )
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

    def _init_npu_pipeline_comm(self, startup_block):
        # NOTE(wangxi): some bug with hccl, must set pp_degree be even number
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
767 768 769 770
        send_to_next_pair = (
            self.pp_rank,
            (self.pp_rank + 1) % self.pp_degree,
        )  # 2->3
771
        recv_from_next_pair = (
772 773 774
            (self.pp_rank + 1) % self.pp_degree,
            self.pp_rank,
        )  # 3->2
775
        recv_from_prev_pair = (
776 777
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree,
            self.pp_rank,
778
        )  # 1->2
779 780 781 782
        send_to_prev_pair = (
            self.pp_rank,
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree,
        )  # 2->1
783 784 785 786 787 788 789 790

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
791 792 793
        logger.info(
            "pair0(even->odd): pp pair:{}, ring_id: {}".format(pair, ring_id)
        )
794 795 796 797 798 799

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
800 801 802
        logger.info(
            "pair1(even<-odd): pp pair:{}, ring_id: {}".format(pair, ring_id)
        )
803 804 805 806 807

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
808 809 810
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1], max_ring_id + 1
            )  # 3->0 not in pp_ring_map
811 812 813
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
814 815 816 817 818
            logger.info(
                "pair2(odd->even): pp pair:{}, ring_id: {}".format(
                    pair, ring_id
                )
            )
819 820 821

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
822 823 824
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1], max_ring_id + 2
            )  # 0->3 not in pp_ring_map
825 826 827
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
828 829 830 831 832
            logger.info(
                "pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                    pair, ring_id
                )
            )
833

834 835 836 837
        assert len(my_pair) == 0, (
            "Current pipeline does not support cross stage communication, "
            "please check unexpected pair {}".format(my_pair)
        )
838 839 840

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
L
lilong12 已提交
841
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
842 843 844 845 846 847 848 849 850
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.pp_group_endpoints,
                self.pp_rank,
                self.pp_ring_id,
                False,
                sync=False,
            )
851

852 853 854 855 856 857 858 859 860 861 862 863
        if core.is_compiled_with_npu():
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

864
    def _init_comm(self):
865
        # sync var
866 867
        startup_block = self._startup_program.global_block()

868
        # mp ring
869
        if self.mp_degree > 1:
870 871 872 873 874 875 876 877 878
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.mp_group_endpoints,
                self.mp_rank,
                self.mp_ring_id,
                False,
                sync=False,
            )
879

880
        # sharding ring
881 882 883 884 885 886 887 888
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
889 890
                sync=False,
            )
891

892 893
        # pp ring
        if self.pp_degree > 1:
894
            self._init_pipeline_comm(startup_block)
895 896

        # pure dp ring
897
        if self.dp_degree > 1:
898 899 900 901 902 903 904 905 906
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.dp_group_endpoints,
                self.dp_rank,
                self.dp_ring_id,
                False,
                sync=False,
            )
907

908 909
        startup_block._sync_with_cpp()

910
    def _build_shard(self, params_grads, shard_rank, shard_size):
911 912
        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
913
        self._shard.setup(params_grads, shard_rank, shard_size)
914 915 916

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
917 918
            self._main_program.global_block()
        )
919

920 921 922
    def _wait(
        self,
    ):
923 924 925
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
926 927
            self._collective_helper._wait(current_endpoint, endpoints)

928 929 930 931 932 933 934 935
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

936 937 938 939 940
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
941 942

        var2broadcast_time = dict()
943 944 945 946
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
947
            assert int(op.attr('op_role')) != int(OpRole.Optimize)
948 949 950 951 952 953 954 955 956 957 958 959 960
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
961 962 963
                                input_name = input_name[
                                    : input_name.find(".cast_fp16@GRAD")
                                ]
964 965

                        if input_name in self._backward_remain_anchors:
966
                            segment = self.collect_segment(
967 968 969 970 971 972 973
                                segment, op_idx, block
                            )
                            assert (
                                input_name not in self._forward_remain_anchors
                            ), "segment anchor [{}] met twice !".format(
                                input_name
                            )
974 975 976 977 978
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
979
                            segment = self.collect_segment(
980 981
                                segment, op_idx, block
                            )
982
                            self._forward_remain_anchors.remove(output_name)
983 984 985 986 987 988 989 990 991 992 993 994 995 996

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
997 998 999
                    broadcast_var_name = unique_name.generate(
                        input_name + "@BroadCast"
                    )
1000
                    segment._fill_constant_vars.append(broadcast_var_name)
1001 1002 1003 1004 1005

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
1006 1007 1008
                    broadcast_var_base_name = broadcast_var_base_name[
                        : broadcast_var_base_name.find(".subprog")
                    ]
1009

1010 1011 1012
                var2broadcast_time[broadcast_var_base_name] = (
                    var2broadcast_time.get(broadcast_var_base_name, 0) + 1
                )
1013

1014
                segment._param2broadcast[input_name] = broadcast_var_name
1015
                segment._broadcast_vars.append(
1016 1017
                    (broadcast_var_name, self._shard.device(input_name))
                )
1018
                segment._param_mem += get_var_size(
1019 1020
                    self._main_program.global_block().var(input_name)
                )
1021 1022

            # find reduce vars
1023 1024 1025 1026
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
1027
                if is_backward_op(op) and OP_ROLE_VAR_KEY in op.attr_names:
1028 1029 1030 1031
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
1032 1033 1034 1035
                            param, reduced_grad = (
                                op_role_var[i],
                                op_role_var[i + 1],
                            )
1036
                            segment._allreduce_vars.append(reduced_grad)
1037 1038 1039
                            assert (
                                reduced_grad not in self._reduced_grads_to_param
                            )
1040
                            self._reduced_grads_to_param[reduced_grad] = param
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
1052 1053

        if self._sharding_segment_strategy == "segment_anchors":
1054 1055 1056 1057 1058 1059
            assert (
                len(self._forward_remain_anchors) == 0
            ), "remain anchors {}".format(self._forward_remain_anchors)
            assert (
                len(self._backward_remain_anchors) == 0
            ), "remain anchors {}".format(self._backward_remain_anchors)
1060 1061

        if self._verbose:
1062 1063 1064 1065 1066 1067 1068 1069
            for varname in sorted(
                var2broadcast_time, key=var2broadcast_time.get, reverse=True
            ):
                logger.info(
                    "Sharding broadcast: [{}] times [{}]".format(
                        var2broadcast_time[varname], varname
                    )
                )
1070
            for idx_ in range(len(self._segments)):
1071
                logger.info("segment [{}] :".format(idx_))
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
                logger.info(
                    "start op: [{}]  [{}]".format(
                        block.ops[self._segments[idx_]._start_idx].desc.type(),
                        block.ops[
                            self._segments[idx_]._start_idx
                        ].desc.input_arg_names(),
                    )
                )
                logger.info(
                    "end   op: [{}]  [{}]".format(
                        block.ops[self._segments[idx_]._end_idx].desc.type(),
                        block.ops[
                            self._segments[idx_]._end_idx
                        ].desc.input_arg_names(),
                    )
                )
1088 1089
        return

1090
    def _prune_main_program(self, block, shard, rings):
1091 1092 1093
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
1094 1095 1096 1097 1098

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
1099

1100 1101
        """
        weightdecay_helper = WeightDecayHelper()
1102
        weightdecay_helper.prune_weight_decay(block, shard)
1103 1104

        # FIXME(wangxi): mp should prune duplicated param_grads
1105 1106 1107
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
1108
        FP16Utils.prune_fp16(block, shard, self._reduced_grads_to_param, rings)
1109

1110
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
1111
        gradientclip_helper = GradientClipHelper(None)
1112
        gradientclip_helper.prune_gradient_clip(block, shard, rings)
1113 1114 1115 1116 1117 1118

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
1119
            # FIXME(wangxi): need use grads, pipeline grad is @GRAD@MERGE
1120 1121 1122 1123 1124
            if (
                op.type == "c_allreduce_sum"
                and op.attr('use_model_parallel') is False
            ):
                assert len(output_names) == 1
1125 1126 1127
                output_name = output_names[0]
                reduced_grads.append(output_name)

1128
        # prune optimizer state and param
1129 1130
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
1131
            if shard.is_opti_var(var_name) and not shard.has_opt_var(var_name):
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
1142 1143 1144 1145 1146 1147 1148
                "c_allreduce_sum",
                "c_sync_comm_stream",
                "c_calc_comm_stream",
                "c_gen_nccl_id",
                "c_comm_init",
                'send_v2',
                'recv_v2',
1149 1150 1151
            ]:
                pass
            elif op.type == "conditional_block":
1152
                assert op.desc.has_attr("sub_block")
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
1168 1169
                    list(enumerate(subblock_deps._block.ops))
                ):
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
1181 1182
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
1183
                if program_deps.should_remove_op(idx):
1184
                    # NOTE(wangxi): need reserve all param in optimizer_sharding
1185 1186 1187
                    reserved_vars = (
                        self._params if self._optimizer_sharding else None
                    )
1188
                    program_deps.remove_op(idx, reserved_vars)
1189

1190
        # NOTE (JZ-LIANG) revise and unify logic here
1191
        # sharding support fp16_allreduce logic
1192 1193 1194 1195 1196 1197
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
1198 1199
                    if block.has_var(var_name):
                        reserved_x.append(var_name)
1200
                op.desc.set_input('X', reserved_x)
1201 1202 1203 1204 1205
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
1206 1207
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
1208

1209
        if combined with pipeline(grad accumulate),
1210
        the grad allreduce should be done in optimize role
1211 1212 1213
        """
        if len(self._segments) < 1:
            return
1214
        # sharding
1215 1216 1217 1218 1219 1220 1221
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
1222 1223 1224 1225 1226
        for idx in range(
            self._segments[-1]._end_idx - 1,
            self._segments[-1]._start_idx - 1,
            -1,
        ):
1227 1228
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
1229 1230
                if "MERGED" in op.output_arg_names[0]:
                    new_end_idx = idx + 1
1231
            elif op.type == "cast":
1232 1233
                if "@TMP" in op.output_arg_names[0]:
                    new_end_idx = idx + 1
1234 1235
        self._segments[-1]._end_idx = new_end_idx

1236
        if self._segments[-1]._allreduce_vars:
1237
            shard_allredue_vars = self._shard.filter_grads(
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
                self._segments[-1]._allreduce_vars
            )
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
                    insert_sync_comm_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                    )
1255 1256 1257 1258 1259
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
1260 1261
                        user_defined_strategy=self.user_defined_strategy,
                    )
1262
            # gradient merge
1263 1264 1265 1266
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1267
                self.create_persistable_gradients_and_insert_merge_ops(
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
                    block,
                    self._startup_program.global_block(),
                    self._segments[-1]._end_idx,
                    shard_allredue_vars,
                    self._shard,
                )

            insert_sync_comm_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
            )
1281
            # allreduce --> reduce
1282 1283 1284 1285 1286 1287 1288 1289 1290
            insert_reduce_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False,
            )
1291 1292

        for idx, segment in reversed(list(enumerate(self._segments))):
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
            allreduce_vars = (
                self._segments[idx - 1]._allreduce_vars if idx > 0 else []
            )
            broadcast_vars = (
                self._segments[idx + 1]._broadcast_vars
                if idx < len(self._segments) - 1
                else []
            )
            fill_constant_vars = (
                self._segments[idx + 2]._fill_constant_vars
                if idx < len(self._segments) - 2
                else []
            )
            cast_ops = (
                self._segments[idx + 2]._cast_ops
                if idx < len(self._segments) - 2
                else {}
            )
1311 1312 1313 1314

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
1315 1316 1317 1318 1319 1320 1321
                    if (
                        input_name in segment._param2broadcast
                        and input_name != segment._param2broadcast[input_name]
                    ):
                        op._rename_input(
                            input_name, segment._param2broadcast[input_name]
                        )
1322 1323 1324 1325 1326

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
1327 1328 1329 1330 1331 1332 1333 1334
                        shape=self._main_program.global_block()
                        .var(param_name)
                        .shape,
                        dtype=self._main_program.global_block()
                        .var(param_name)
                        .dtype,
                        persistable=False,
                    )
1335 1336 1337

            # step1: remove cast ops
            block._sync_with_cpp()
1338
            segment._end_idx += FP16Utils.remove_cast_op(
1339 1340
                block, self._params, segment, 0
            )
1341 1342

            # step2: add Sync ops
1343 1344
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
                    insert_sync_comm_ops(
                        block,
                        segment._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                    )
1360 1361 1362

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
1363 1364 1365 1366 1367 1368
                        insert_sync_comm_ops(
                            block,
                            segment._end_idx,
                            self.sharding_ring_id,
                            broad_cast_vars,
                        )
1369 1370 1371 1372 1373
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
1374 1375 1376 1377 1378 1379
                        insert_sync_comm_ops(
                            block,
                            segment._end_idx,
                            self.sharding_ring_id,
                            comm_dep_vars,
                        )
1380
            # gradient merge
1381 1382 1383 1384
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1385 1386
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
1387 1388 1389 1390 1391 1392
                    insert_sync_comm_ops(
                        block,
                        segment._end_idx,
                        self.sharding_ring_id,
                        broad_cast_vars,
                    )
1393

1394 1395 1396 1397 1398
            calc_dep_vars = (
                fill_constant_vars
                + [k for k, v in cast_ops.items()]
                + self._segments[idx]._allreduce_vars
            )
1399 1400

            if len(calc_dep_vars) > 0:
1401 1402 1403
                insert_sync_calc_op(
                    block, segment._end_idx, [calc_dep_vars[-1]]
                )
1404

1405
            # step3: insert `fill_constant` ops
1406 1407 1408
            insert_fill_constant_ops(
                block, segment._end_idx, fill_constant_vars
            )
1409

1410
            # step4: add `cast` ops
1411 1412 1413
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
1414
            # gradient merge
1415 1416 1417 1418
            if (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1419
                self.create_persistable_gradients_and_insert_merge_ops(
1420 1421 1422 1423 1424 1425
                    block,
                    self._startup_program.global_block(),
                    segment._start_idx,
                    shard_allredue_vars,
                    self._shard,
                )
1426

1427 1428 1429
            insert_broadcast_ops(
                block, segment._start_idx, self.sharding_ring_id, broadcast_vars
            )
1430

1431
            # step6: add all_reduce ops
1432
            # dp
1433 1434 1435 1436 1437 1438 1439 1440 1441
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
1442 1443 1444 1445 1446
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
1447 1448 1449 1450 1451 1452 1453 1454
                        user_defined_strategy=self.user_defined_strategy,
                    )
                    insert_sync_comm_ops(
                        block,
                        segment._start_idx,
                        self.sharding_ring_id,
                        allreduce_vars,
                    )
1455
            # gradient merge
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
                insert_sync_comm_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                )
1466
            # sharding
1467
            # allreduce --> reduce
1468 1469
            # TODO temp change
            if len(allreduce_vars) > 0:
1470 1471 1472 1473 1474 1475 1476 1477 1478
                insert_reduce_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                    self._shard,
                    op_role=OpRole.Backward,
                    use_calc_stream=False,
                )
1479 1480 1481 1482

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1483
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
            insert_sync_comm_ops(
                block,
                self._segments[0]._start_idx,
                self.sharding_ring_id,
                broadcast_vars,
            )
            insert_broadcast_ops(
                block,
                self._segments[0]._start_idx,
                self.sharding_ring_id,
                self._segments[0]._broadcast_vars,
            )
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
1509 1510 1511
            insert_sync_calc_op(
                block, self._segments[0]._start_idx, [calc_deps_vars[-1]]
            )
1512 1513

        if fill_constant_vars:
1514 1515 1516
            insert_fill_constant_ops(
                block, self._segments[0]._start_idx, fill_constant_vars
            )
1517 1518 1519 1520 1521 1522

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

1523
    def _prune_startup_program(self, block, shard):
1524 1525
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
1526 1527 1528
                if shard.has_var(output_name):
                    continue
                if self._optimizer_sharding and shard.is_param(output_name):
1529
                    continue
1530
                # TODO why do we remove op, when only one var is removed
1531 1532 1533 1534
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
1535 1536 1537
            if shard.has_var(var_name):
                continue
            if self._optimizer_sharding and shard.is_param(var_name):
1538 1539 1540
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1541

1542
    def _build_groups(self):
1543 1544
        """
        pre-assign ring ids
1545 1546 1547 1548
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
W
WangXi 已提交
1549 1550
            pp: 4
            pp-pair: >= 20
1551
        if one parallelism is not enable: -1
1552
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp
1553 1554 1555 1556 1557 1558
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
        self._collective_helper = CollectiveHelper(
            self.role_maker, nrings=self._nrings_sharding
        )
        assert (
            self.global_word_size % self.mp_degree == 0
        ), "global_word_size: {} should be divisible to the mp_degree: {}".format(
            self.global_word_size, self.mp_degree
        )
        assert (
            self.global_word_size % self.sharding_degree == 0
        ), "global_word_size: {} should be divisible to the sharding_degree: {}".format(
            self.global_word_size, self.sharding_degree
        )
        assert (
            self.global_word_size % self.pp_degree == 0
        ), "global_word_size: {} should be divisible to the pp_degree: {}".format(
            self.global_word_size, self.pp_degree
        )
        assert (
            self.global_word_size % self.dp_degree == 0
        ), "global_word_size: {} should be divisible to the dp_degree: {}".format(
            self.global_word_size, self.dp_degree
        )
1582 1583 1584 1585 1586 1587 1588

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
1589 1590
                ep
                for idx, ep in enumerate(self.global_endpoints)
1591
                if idx // self.mp_degree == self.mp_group_id
1592
            ]
1593
            assert self.current_endpoint in self.mp_group_endpoints
1594 1595 1596 1597 1598
            assert (
                len(self.mp_group_endpoints) == self.mp_degree
            ), "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree
            )
1599 1600 1601 1602 1603 1604 1605
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

1606
        # sharding
1607 1608
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
1609 1610 1611 1612 1613 1614
            self.sharding_rank = (
                self.global_rank // self.mp_degree
            ) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree
            )
1615 1616 1617
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
1618 1619 1620 1621 1622
                    ep
                    for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree))
                    == self.sharding_group_id
                    and idx % self.mp_degree == self.mp_rank
1623
                ]
1624
            # sharding + ...
1625 1626
            else:
                self.sharding_group_endpoints = [
1627 1628 1629 1630
                    ep
                    for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree))
                    == self.sharding_group_id
1631 1632 1633 1634 1635 1636 1637 1638 1639
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1640 1641
        # pp
        if self.pp_degree > 1:
1642 1643 1644
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1645 1646 1647 1648 1649
            self.pp_rank = (
                self.global_rank
                // (self.sharding_degree * self.mp_degree)
                % self.pp_degree
            )
1650 1651
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
1652 1653
                self.mp_degree * self.sharding_degree * self.pp_degree
            )
1654
            pp_first_stage_idx = self.global_rank % (
1655 1656 1657 1658
                self.sharding_degree * self.mp_degree
            ) + self.pp_group_id * (
                self.mp_degree * self.sharding_degree * self.pp_degree
            )
1659 1660 1661
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
1662
                self.pp_group_endpoints.append(
1663 1664 1665 1666
                    self.global_endpoints[
                        pp_first_stage_idx + pp_stage_offset * i
                    ]
                )
1667 1668 1669
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1670 1671
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1672 1673 1674 1675
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1676 1677 1678
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
1679
        # sharding-hybrid-dp as one senario of outter-pure-dp
L
lilong12 已提交
1680 1681
        local_pp_degree = self.pp_degree
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
            assert self.pp_degree == 2, (
                "For manually set pipeline, only " "pp_degree = 2 is supported."
            )
            assert (
                self.global_word_size
                == self.mp_degree * self.sharding_degree * self.dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                self.global_word_size,
                self.mp_degree,
                self.sharding_degree,
                self.dp_degree,
            )
L
lilong12 已提交
1694 1695
            local_pp_degree = 1
        else:
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
            assert (
                self.global_word_size
                == self.mp_degree
                * self.sharding_degree
                * self.pp_degree
                * self.dp_degree
            ), "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
                self.mp_degree,
                self.sharding_degree,
                self.pp_degree,
                self.dp_degree,
                self.global_word_size,
            )
1709

1710 1711
        if self.dp_degree > 1:
            self.dp_ring_id = 2
L
lilong12 已提交
1712
            self.dp_rank = self.global_rank // (
1713 1714
                self.sharding_degree * self.mp_degree * local_pp_degree
            )
1715
            dp_first_rank_idx = self.global_rank % (
1716 1717 1718
                self.sharding_degree * self.mp_degree * local_pp_degree
            )
            dp_offset = self.sharding_degree * self.mp_degree * local_pp_degree
1719 1720
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
1721
                self.dp_group_endpoints.append(
1722 1723
                    self.global_endpoints[dp_first_rank_idx + dp_offset * i]
                )
1724
            assert self.current_endpoint in self.dp_group_endpoints
1725
            logger.info("Hybrid DP mode turn on !")
1726 1727 1728
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1729
            self.dp_group_endpoints = []
1730

1731
        # global group
1732 1733
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1734
        self.global_ring_id = 3
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
        logger.info("global word size: {}".format(self.global_word_size))
        logger.info("global rank: {}".format(self.global_rank))
        logger.info("global endpoints: {}".format(self.global_endpoints))
        logger.info("global ring id: {}".format(self.global_ring_id))
        logger.info("#####" * 6)

        logger.info("mp group size: {}".format(self.mp_degree))
        logger.info("mp rank: {}".format(self.mp_rank))
        logger.info("mp group id: {}".format(self.mp_group_id))
        logger.info("mp group endpoints: {}".format(self.mp_group_endpoints))
        logger.info("mp ring id: {}".format(self.mp_ring_id))
        logger.info("#####" * 6)

        logger.info("sharding group size: {}".format(self.sharding_degree))
        logger.info("sharding rank: {}".format(self.sharding_rank))
        logger.info("sharding group id: {}".format(self.sharding_group_id))
1752 1753 1754
        logger.info(
            "sharding group endpoints: {}".format(self.sharding_group_endpoints)
        )
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        logger.info("sharding ring id: {}".format(self.sharding_ring_id))
        logger.info("#####" * 6)

        logger.info("pp group size: {}".format(self.pp_degree))
        logger.info("pp rank: {}".format(self.pp_rank))
        logger.info("pp group id: {}".format(self.pp_group_id))
        logger.info("pp group endpoints: {}".format(self.pp_group_endpoints))
        logger.info("pp ring id: {}".format(self.pp_ring_id))
        logger.info("#####" * 6)

        logger.info("pure dp group size: {}".format(self.dp_degree))
        logger.info("pure dp rank: {}".format(self.dp_rank))
1767 1768 1769
        logger.info(
            "pure dp group endpoints: {}".format(self.dp_group_endpoints)
        )
1770 1771
        logger.info("pure dp ring id: {}".format(self.dp_ring_id))
        logger.info("#####" * 6)
1772 1773

        return
1774

1775 1776 1777 1778 1779 1780 1781
    def _recreate_not_persist_param_as_var(self):
        def recreate_not_persist_param_as_var(program):
            block = program.global_block()
            params = block.all_parameters()
            for param in params:
                if param.persistable:
                    continue
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
                name = param.name
                shape = param.shape
                dtype = param.dtype
                type = param.type
                lod_level = param.lod_level
                stop_gradient = param.stop_gradient
                trainable = param.trainable
                optimize_attr = param.optimize_attr
                regularizer = param.regularizer
                have_dist_attr = False
                is_distributed = False
                if hasattr(param, 'is_distributed'):
                    have_dist_attr = True
                    is_distributed = param.is_distributed

1798
                block._remove_var(name, sync=False)
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
                var = block.create_var(
                    name=name,
                    shape=shape,
                    dtype=dtype,
                    type=type,
                    lod_level=lod_level,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    persistable=False,
                )
1809 1810 1811
                if have_dist_attr:
                    var.is_distributed = is_distributed

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
            block._sync_with_cpp()

        recreate_not_persist_param_as_var(self._startup_program)
        recreate_not_persist_param_as_var(self._main_program)

    def _initialization_broadcast(self):
        """
        this funtion is to ensure the initialization between dp group to be
        identical when hybrid-dp is used, and the initialization of
        not distributed param between mp group to be identical.
        """
        if self.dp_degree <= 1 and self.mp_degree <= 1:
            return

        startup_block = self._startup_program.global_block()

        params = startup_block.all_parameters()
        params_name = []
        not_dist_param_name = set()

        for param in params:
            params_name.append(param.name)
            if not hasattr(param, 'is_distributed') or not param.is_distributed:
                not_dist_param_name.add(param.name)

1837 1838 1839 1840 1841 1842 1843
        # offload and optimize_cast will insert broadcast op
        broadcast_params = set()
        for op in startup_block.ops:
            if op.type == 'c_broadcast':
                broadcast_params.add(op.desc.output_arg_names()[0])

        for param in params_name:
1844 1845
            if param in broadcast_params:
                continue
1846 1847 1848 1849 1850 1851 1852 1853 1854

            rings = []
            # need sync not distributed param in mp group
            if self.mp_degree > 1 and param in not_dist_param_name:
                rings.append(self.mp_ring_id)
            if self.dp_degree > 1:
                rings.append(self.dp_ring_id)

            for ring in rings:
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
                startup_block.append_op(
                    type='c_broadcast',
                    inputs={'X': param},
                    outputs={'Out': param},
                    attrs={
                        'ring_id': ring,
                        'root': 0,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Forward,
                    },
                )
1866

1867 1868
        startup_block._sync_with_cpp()

1869 1870
    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
1871 1872
        self, main_block, startup_block, insert_idx, grad_names, shard
    ):
1873 1874

        for grad_name in grad_names:
1875 1876 1877 1878 1879
            assert (
                get_grad_device(grad_name, shard) == shard.worker_idx
            ), "try to merge gradient not belong to current shard: [{}]".format(
                grad_name
            )
1880
            persistable_grad_name = grad_name + '@GradiantMerge'
1881 1882 1883 1884 1885
            assert (
                grad_name not in self._grad2merged_grad
            ), "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name
            )
1886 1887 1888 1889 1890 1891 1892
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
1893 1894
                persistable=True,
            )
1895 1896 1897 1898
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
1899 1900
                persistable=True,
            )
1901 1902 1903 1904 1905

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
1906
                inputs={'X': grad_name, 'Y': gradient_merge_var},
1907 1908 1909 1910
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
1911 1912 1913
                    OP_ROLE_KEY: OpRole.Backward,
                },
            )
1914 1915

            # startup initialization
1916 1917 1918 1919 1920 1921 1922 1923 1924
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": grad_var.shape,
                    "dtype": grad_var.dtype,
                    "value": float(0),
                },
            )
1925 1926 1927 1928 1929 1930

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
W
wangxiaoning 已提交
1931
        acc_step_var = create_global_var(
1932 1933 1934 1935 1936
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
1937 1938
            force_cpu=True,
        )
1939

W
wangxiaoning 已提交
1940
        zero_var = create_global_var(
1941 1942 1943 1944 1945 1946 1947
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
1948 1949

        # Add step var & cond var
W
wangxiaoning 已提交
1950
        current_step_var = create_global_var(
1951 1952 1953 1954 1955
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
1956 1957
            force_cpu=True,
        )
1958

1959 1960 1961
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
1962 1963 1964

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
            main_block.append_op(
                type='increment',
                inputs={'X': [current_step_var]},
                outputs={'Out': [current_step_var]},
                attrs={'step': float(1), OP_ROLE_KEY: OpRole.Optimize},
            )

            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': current_step_var, 'Y': acc_step_var},
                outputs={'Out': current_step_var},
                attrs={
                    'axis': -1,
                    OP_ROLE_KEY: OpRole.Optimize,
                    'use_mkldnn': False,
                },
            )
1982 1983

            # cond_var = (step_var == 0)
1984 1985 1986 1987 1988 1989
            main_block.append_op(
                type='equal',
                inputs={'X': current_step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
                attrs={OP_ROLE_KEY: OpRole.Optimize},
            )
1990 1991 1992 1993 1994 1995 1996 1997 1998
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
1999
            amp
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

2014
        # allreduce grad@gradientmerge
2015
        if self.hybrid_dp:
2016 2017 2018
            assert (
                self.dp_ring_id >= 0
            ), "dp_ring_id should larger than 0 when in sharding&DP mode"
2019 2020
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
                cur_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': merged_grad_var},
                    outputs={'Out': merged_grad_var},
                    attrs={
                        'ring_id': self.dp_ring_id,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Optimize,
                    },
                )
2031 2032 2033 2034 2035

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
            cur_block.append_op(
                type='scale',
                inputs={'X': merged_grad_var},
                outputs={'Out': merged_grad_var},
                attrs={
                    'scale': 1.0 / float(self._gradient_merge_acc_step),
                    'bias': 0.0,
                    'bias_after_scale': False,
                    OP_ROLE_KEY: OpRole.Optimize,
                },
            )
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
2057 2058
                        input_name, self._grad2merged_grad[input_name]
                    )
2059 2060 2061 2062

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
2063 2064
                        output_name, self._grad2merged_grad[output_name]
                    )
2065 2066

                # move non temp optimize vars from block0 to cond block
2067 2068 2069
                if (
                    output_name not in already_moved_var_names
                    and output_name not in self._grad2merged_grad.keys()
2070 2071 2072 2073 2074 2075 2076 2077
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
2078 2079 2080 2081 2082 2083 2084 2085
                            var_.name, sync=False
                        )
                        self.cond_block.create_var(
                            name=name_,
                            shape=shape_,
                            dtype=type_,
                            persistable=False,
                        )
2086 2087 2088 2089 2090 2091 2092 2093
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
            cur_block.append_op(
                type='fill_constant',
                outputs={'Out': merged_grad_var},
                attrs={
                    "shape": merged_grad_var.shape,
                    "dtype": merged_grad_var.dtype,
                    "value": float(0),
                    OP_ROLE_KEY: OpRole.Optimize,
                },
            )
2104 2105 2106 2107

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

W
WangXi 已提交
2108
    def _sharding_gradient_merge(self):
2109 2110 2111 2112 2113 2114
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
2115 2116 2117 2118
        if (
            self.gradient_merge_mode != "sharding_gm"
            or self._gradient_merge_acc_step <= 1
        ):
W
WangXi 已提交
2119 2120 2121
            return

        main_block = self._main_program.global_block()
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
2137 2138
            reversed(self.original_optimize_ops_desc)
        )
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
2155 2156
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2157 2158 2159 2160 2161 2162
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
2163
            outputs={'Out': [], 'Scope': [step_scope]},
2164 2165 2166
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
2167 2168
            },
        )