clip.py 35.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

F
fengjiayi 已提交
15
import copy
16
import warnings
F
fengjiayi 已提交
17

Y
Yu Yang 已提交
18
import functools
W
WangXi 已提交
19
import paddle
20 21
from . import layers
from . import framework
F
fengjiayi 已提交
22
from . import core
C
Chengmo 已提交
23
from . import name_scope
24
from .dygraph import base as imperative_base
W
WangXi 已提交
25
from .data_feeder import check_variable_and_dtype
26
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
W
WangXi 已提交
27
from .layer_helper import LayerHelper
28
from .framework import default_main_program
29
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
30

F
fengjiayi 已提交
31
__all__ = [
32 33 34 35 36
    'set_gradient_clip',
    'ErrorClipByValue',
    'ClipGradByValue',
    'ClipGradByNorm',
    'ClipGradByGlobalNorm',
F
fengjiayi 已提交
37
]
Y
Yu Yang 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
_clip_by_global_norm_using_mp_type_flag = False


def _clip_by_global_norm_using_mp_type(*args):
    global _clip_by_global_norm_using_mp_type_flag
    assert len(args) <= 1
    if len(args) == 1:
        assert isinstance(args[0], bool)
        old_value = _clip_by_global_norm_using_mp_type_flag
        _clip_by_global_norm_using_mp_type_flag = args[0]
        return old_value
    else:
        return _clip_by_global_norm_using_mp_type_flag


def _cast_to_mp_type_if_enabled(x):
55 56 57 58
    if (
        x.dtype == core.VarDesc.VarType.FP16
        or x.dtype == core.VarDesc.VarType.BF16
    ) and _clip_by_global_norm_using_mp_type():
59 60 61 62
        return x.astype(core.VarDesc.VarType.FP32)
    else:
        return x

Y
Yu Yang 已提交
63

W
WangXi 已提交
64 65 66 67 68
def _squared_l2_norm(x):
    r"""
    This OP returns the squared L2 norm of a tensor.
    """

69
    x = _cast_to_mp_type_if_enabled(x)
70 71 72 73 74
    if (
        core.is_compiled_with_xpu()
        or x.dtype == core.VarDesc.VarType.FP16
        or x.dtype == core.VarDesc.VarType.BF16
    ):
75
        square = paddle.square(x)
76
        sum_square = paddle.sum(square)
W
WangXi 已提交
77 78
        return sum_square

79
    if in_dygraph_mode():
80
        return _C_ops.squared_l2_norm(x)
81 82
    elif _in_legacy_dygraph():
        return _legacy_C_ops.squared_l2_norm(x)
W
WangXi 已提交
83 84

    op_type = 'squared_l2_norm'
85
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], op_type)
W
WangXi 已提交
86 87 88 89 90 91 92 93 94
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": x}
    outputs = {'Out': out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out


95
class BaseErrorClipAttr:
F
fengjiayi 已提交
96 97 98
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
99
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
100 101 102 103
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
104
    r"""
105 106
    Clips tensor values to the range [min, max].

107 108
    Given a tensor ``t`` (see Examples below), this operation clips its value \
    to ``min`` and ``max`` inplace.
109 110 111 112 113 114 115

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
116
        will be set to ``-max`` by framework.
117 118 119 120

    Examples:
        .. code-block:: python

121
            import paddle.fluid as fluid
2
201716010711 已提交
122 123
            import paddle
            paddle.enable_static()
124 125 126 127 128
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
C
Chengmo 已提交
129 130
                image = fluid.layers.data(
                    name='x', shape=[784], dtype='float32')
131 132
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
C
Chengmo 已提交
133 134
                predict = fluid.layers.fc(
                    input=hidden2, size=10, act='softmax')
135 136
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
2
201716010711 已提交
137
                avg_cost = paddle.mean(cost)
138 139 140 141
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
2
201716010711 已提交
142
                    )
143 144
    """

F
fengjiayi 已提交
145 146 147 148 149 150 151 152 153
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
154 155 156
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
157
    def _append_clip_op(self, block, grad_name):
158 159 160 161
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
162 163
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
164 165 166 167 168 169


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
170
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
171
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
172
        error_clip = getattr(fwd_var, "error_clip", None)
173 174 175
        if not (
            error_clip is None or isinstance(error_clip, BaseErrorClipAttr)
        ):
F
fengjiayi 已提交
176 177 178
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
179
        if error_clip is not None:
Y
yuyang18 已提交
180
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
181 182


183
class ClipGradBase:
184
    def __init__(self):
185
        super().__init__()
186

F
fengjiayi 已提交
187 188 189
    def __str__(self):
        raise NotImplementedError()

190
    @imperative_base.no_grad
191 192
    def _dygraph_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
193

194 195
    def _static_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
196

197
    def __call__(self, params_grads):
J
Jiabin Yang 已提交
198
        if framework._non_static_mode():
199 200 201 202 203 204
            return self._dygraph_clip(params_grads)
        else:
            for p, g in params_grads:
                if getattr(p, 'gradient_clip_attr', None) is not None:
                    warnings.warn(
                        "'set_gradient_clip' will be ineffective, because you have "
205
                        "set 'need_clip' in 'ParamAttr'. So, 'set_gradient_clip' "
206 207
                        "is redundant and you can remove it."
                    )
208 209
                    break
            return self._static_clip(params_grads)
F
fengjiayi 已提交
210

Y
yuyang18 已提交
211
    def _process_context(self, context, param, grad):
212
        raise NotImplementedError()
Y
Yu Yang 已提交
213

Y
yuyang18 已提交
214
    def _create_operators(self, param, grad):
215
        raise NotImplementedError()
Y
Yu Yang 已提交
216 217


218
class ClipGradByValue(ClipGradBase):
219
    """
220
    Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max].
221

222
    - Any values less than min are set to ``min``.
223

224
    - Any values greater than max are set to ``max``.
225

226
    The multi-dimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
227
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
228 229

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
230
    (for example: :ref:`api_paddle_optimizer_SGD`).
231 232

    Note:
233
        ``need_clip`` of ``ClipGradByValue`` HAS BEEN DEPRECATED since 2.0.
234
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
235

236 237
    Args:
        max (float): The maximum value to clip by.
238
        min (float, optional): The minimum value to clip by. if not set by user, it will be set to ``-max``
239
            automatically. In this case, ``max`` must be greater than 0.
240 241 242

    Examples:
        .. code-block:: python
243

244
            import paddle
245

246
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
247 248
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
249
                                      bias_attr=paddle.ParamAttr(need_clip=False))
250 251 252 253
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

254
            clip = paddle.nn.ClipGradByValue(min=-1, max=1)
255 256
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
257 258
    """

259
    def __init__(self, max, min=None):
260
        super().__init__()
Y
Yu Yang 已提交
261
        if min is None:
262
            assert max > 0.0
Y
Yu Yang 已提交
263
            min = -max
264 265
        self.max = float(max)
        self.min = float(min)
Y
Yu Yang 已提交
266

F
fengjiayi 已提交
267
    def __str__(self):
268
        return "Clip Gradient By Value, min = %f, max=%f" % (self.min, self.max)
269

270
    @imperative_base.no_grad
271 272 273 274 275
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
276
            if getattr(p, 'need_clip', True) is False:
277 278
                params_and_grads.append((p, g))
                continue
H
hong 已提交
279
            new_grad = paddle.clip(x=g, min=self.min, max=self.max)
280 281 282 283 284
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
285
        param_new_grad_name_dict = dict()
286 287 288 289
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
290
                if getattr(p, 'need_clip', True) is False:
291 292 293 294 295 296
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip(x=g, min=self.min, max=self.max)
                params_and_grads.append((p, new_grad))
297 298
                param_new_grad_name_dict[p.name] = new_grad.name
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
299
        return params_and_grads
F
fengjiayi 已提交
300

Y
yuyang18 已提交
301
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
302 303
        pass

Y
yuyang18 已提交
304
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
305 306 307 308
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


309
class ClipGradByNorm(ClipGradBase):
310
    r"""
311
    Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` .
312

313
    - If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio.
314

315
    - If the l2 norm of :math:`X` is less than or equal to ``clip_norm`` , nothing will be done.
316

317 318
    The multidimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
319 320

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
321
    (for example: :ref:`api_paddle_optimizer_SGD`).
322

323
    The clipping formula is:
324 325

    .. math::
326
        Out =
327 328 329 330 331 332
        \left\{
            \begin{array}{ccl}
                X & & if (norm(X) \leq clip\_norm) \\
                \frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\
        \end{array}
        \right.
333 334 335 336


    where :math:`norm(X)` represents the L2 norm of :math:`X`.

337
    .. math::
338
        norm(X) = ( \sum_{i=1}^{n}|x\_i|^2)^{ \frac{1}{2}}
339

340
    Note:
341
        ``need_clip`` of ``ClipGradByNorm`` HAS BEEN DEPRECATED since 2.0.
342 343
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

344
    Args:
345
        clip_norm(float): The maximum norm value.
C
Chengmo 已提交
346

347 348
    Examples:
        .. code-block:: python
349

350
            import paddle
351

352
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
353 354
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
355
                                      bias_attr=paddle.ParamAttr(need_clip=False))
356 357 358 359
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

360
            clip = paddle.nn.ClipGradByNorm(clip_norm=1.0)
361 362
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
363 364
    """

365
    def __init__(self, clip_norm):
366
        super().__init__()
367
        self.clip_norm = float(clip_norm)
F
fengjiayi 已提交
368

F
fengjiayi 已提交
369
    def __str__(self):
370 371
        return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm

372
    @imperative_base.no_grad
373 374 375 376 377
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
378
            if getattr(p, 'need_clip', True) is False:
379 380 381 382 383 384 385 386 387
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        with framework.name_scope('gradient_clip'):
388
            param_new_grad_name_dict = dict()
389 390 391
            for p, g in params_grads:
                if g is None:
                    continue
392
                if getattr(p, 'need_clip', True) is False:
393 394 395 396 397
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
398
                param_new_grad_name_dict[p.name] = new_grad.name
399
                params_and_grads.append((p, new_grad))
400
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
401
        return params_and_grads
F
fengjiayi 已提交
402

Y
yuyang18 已提交
403
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
404 405
        pass

Y
yuyang18 已提交
406
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
407 408 409 410
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


411 412 413 414 415 416 417 418 419 420 421 422 423 424
_allow_pure_fp16_global_norm_clip_flag = False


def _allow_pure_fp16_global_norm_clip(*args):
    global _allow_pure_fp16_global_norm_clip_flag
    if len(args) == 0:
        return _allow_pure_fp16_global_norm_clip_flag
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        old_value = _allow_pure_fp16_global_norm_clip_flag
        _allow_pure_fp16_global_norm_clip_flag = args[0]
        return old_value


425
class ClipGradByGlobalNorm(ClipGradBase):
426
    r"""
427
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in
428
    :math:`t\_list` , and limit it to ``clip_norm`` .
429

430
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
431

432
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
433

434 435
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
436 437

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
438
    (for example: :ref:`api_paddle_optimizer_SGD`).
439 440

    The clipping formula is:
441 442 443

    .. math::

444
        t\_list[i] = t\_list[i] * \frac{clip\_norm}{\max(global\_norm, clip\_norm)}
445 446 447 448 449 450 451

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

452
    Note:
453
        ``need_clip`` of ``ClipGradyGlobalNorm`` HAS BEEN DEPRECATED since 2.0.
454 455
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

456
    Args:
457
        clip_norm (float): The maximum norm value.
458
        group_name (str, optional): The group name for this clip. Default value is ``default_group``.
459 460 461

    Examples:
        .. code-block:: python
462

463 464
            import paddle

465
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
466 467
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
468
                                      bias_attr=paddle.ParamAttr(need_clip=False))
469 470 471 472
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

473
            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
474 475
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
476 477
    """

478 479 480
    def __init__(
        self, clip_norm, group_name="default_group", auto_skip_clip=False
    ):
481
        super().__init__()
482
        self.clip_norm = float(clip_norm)
F
update  
fengjiayi 已提交
483
        self.group_name = group_name
484 485
        assert isinstance(auto_skip_clip, bool)
        self.auto_skip_clip = auto_skip_clip
486

F
fengjiayi 已提交
487
    def __str__(self):
488 489
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

490
    @imperative_base.no_grad
491 492 493
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
494 495
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
496 497 498
        for p, g in params_grads:
            if g is None:
                continue
499
            if getattr(p, 'need_clip', True) is False:
500 501
                continue
            merge_grad = g
502 503 504 505 506 507

            if in_dygraph_mode() and g.is_selected_rows():
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = merge_grad._get_tensor_from_selected_rows()

            elif g.type == core.VarDesc.VarType.SELECTED_ROWS:
508 509
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
W
WangXi 已提交
510 511

            sum_square = _squared_l2_norm(merge_grad)
512 513 514 515
            if (
                sum_square.dtype == core.VarDesc.VarType.FP16
                or sum_square.dtype == core.VarDesc.VarType.BF16
            ):
516 517 518 519 520
                sum_square_list_fp16.append(sum_square)
            elif sum_square.dtype == core.VarDesc.VarType.FP32:
                sum_square_list_fp32.append(sum_square)
            else:
                sum_square_list.append(sum_square)
521 522

        # all parameters have been filterd out
523 524 525 526 527 528
        if (
            len(sum_square_list)
            + len(sum_square_list_fp16)
            + len(sum_square_list_fp32)
            == 0
        ):
529 530
            return params_grads

531 532 533
        sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"
        global_norm_var = []
        if len(sum_square_list_fp16) > 0:
Z
zhangbo9674 已提交
534
            global_norm_var_fp16 = paddle.add_n(sum_square_list_fp16)
535 536
            global_norm_var.append(global_norm_var_fp16.astype(sum_dtype))
        if len(sum_square_list_fp32) > 0:
Z
zhangbo9674 已提交
537
            global_norm_var_fp32 = paddle.add_n(sum_square_list_fp32)
538 539 540 541 542
            if sum_dtype == 'float32':
                global_norm_var.append(global_norm_var_fp32)
            else:
                global_norm_var.append(global_norm_var_fp32.astype(sum_dtype))
        if len(sum_square_list) > 0:
Z
zhangbo9674 已提交
543
            global_norm_var_fp64 = paddle.add_n(sum_square_list)
544
            global_norm_var.append(global_norm_var_fp64)
Z
zhangbo9674 已提交
545
        global_norm_var = paddle.add_n(global_norm_var)
546
        global_norm_var = paddle.sqrt(global_norm_var)
547 548 549
        max_global_norm = layers.fill_constant(
            shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm
        )
Z
zhangbo9674 已提交
550 551

        need_clip = False
552 553
        if not self.auto_skip_clip:  # always apply clip
            need_clip = True
554
            clip_var = paddle.divide(
555
                x=max_global_norm,
H
HongyuJia 已提交
556
                y=paddle.maximum(x=global_norm_var, y=max_global_norm),
557
            )
558 559
        elif global_norm_var > max_global_norm:
            # only when global_norm_var > max_global_norm, grad need clip
Z
zhangbo9674 已提交
560
            need_clip = True
561
            clip_var = paddle.divide(x=max_global_norm, y=global_norm_var)
562

563 564 565
        for p, g in params_grads:
            if g is None:
                continue
566
            if getattr(p, 'need_clip', True) is False:
567 568
                params_and_grads.append((p, g))
                continue
W
WangXi 已提交
569
            # TODO(wangxi): use inplace elementwise_mul
Z
zhangbo9674 已提交
570
            if need_clip:
571 572 573 574 575
                clip_input = (
                    clip_var.astype(g.dtype)
                    if clip_var.dtype != g.dtype
                    else clip_var
                )
576
                new_grad = paddle.multiply(g, clip_input)
Z
zhangbo9674 已提交
577 578 579
                params_and_grads.append((p, new_grad))
            else:
                params_and_grads.append((p, g))
580 581 582 583 584 585

        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
586 587
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
588 589 590 591
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
592
                if getattr(p, 'need_clip', True) is False:
593 594 595 596 597 598
                    continue
                merge_grad = g
                with p.block.program._optimized_guard([p, g]):
                    if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                        merge_grad = layers.merge_selected_rows(g)
                        merge_grad = layers.get_tensor_from_selected_rows(
599 600
                            merge_grad
                        )
W
WangXi 已提交
601
                    sum_square = _squared_l2_norm(merge_grad)
602 603 604 605 606 607
                    if sum_square.dtype == core.VarDesc.VarType.FP16:
                        sum_square_list_fp16.append(sum_square)
                    elif sum_square.dtype == core.VarDesc.VarType.FP32:
                        sum_square_list_fp32.append(sum_square)
                    else:
                        sum_square_list.append(sum_square)
608 609

            # all parameters have been filterd out
610 611 612 613 614 615
            if (
                len(sum_square_list)
                + len(sum_square_list_fp16)
                + len(sum_square_list_fp32)
                == 0
            ):
616 617 618
                return params_grads

            with p.block.program._optimized_guard([p, g]):
619 620 621 622 623
                sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"

                global_norm_var = []
                if len(sum_square_list_fp16) > 0:
                    global_norm_var_fp16 = layers.sums(sum_square_list_fp16)
624 625 626 627
                    if (
                        sum_square_list_fp32
                        or sum_square_list
                        or not _allow_pure_fp16_global_norm_clip()
628 629
                    ):
                        global_norm_var.append(
630 631
                            global_norm_var_fp16.astype(sum_dtype)
                        )
632 633
                    else:
                        global_norm_var.append(global_norm_var_fp16)
634 635 636 637 638 639
                if len(sum_square_list_fp32) > 0:
                    global_norm_var_fp32 = layers.sums(sum_square_list_fp32)
                    if sum_dtype == 'float32':
                        global_norm_var.append(global_norm_var_fp32)
                    else:
                        global_norm_var.append(
640 641
                            global_norm_var_fp32.astype(sum_dtype)
                        )
642 643 644 645
                if len(sum_square_list) > 0:
                    # fp64
                    global_norm_var_other_dtype = layers.sums(sum_square_list)
                    global_norm_var.append(global_norm_var_other_dtype)
646

647 648 649 650 651
                global_norm_var = (
                    layers.sums(global_norm_var)
                    if len(global_norm_var) > 1
                    else global_norm_var[0]
                )
652
                global_norm_var = paddle.sqrt(x=global_norm_var)
653
                max_global_norm = layers.fill_constant(
654 655
                    shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm
                )
656
                scale_var = paddle.divide(
657
                    x=max_global_norm,
H
HongyuJia 已提交
658
                    y=paddle.maximum(x=max_global_norm, y=global_norm_var),
659
                )
660
            param_new_grad_name_dict = dict()
661 662 663
            for p, g in params_grads:
                if g is None:
                    continue
664
                if getattr(p, 'need_clip', True) is False:
665 666 667 668
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
669
                    new_g = _cast_to_mp_type_if_enabled(g)
W
WangXi 已提交
670
                    # inplace
671 672 673 674 675 676
                    scale_input = (
                        scale_var.astype('float16')
                        if new_g.dtype == core.VarDesc.VarType.FP16
                        and scale_var.dtype != core.VarDesc.VarType.FP16
                        else scale_var
                    )
677 678 679 680 681
                    # NOTE(Yuang Liu): For pure dp with gradient merge, the p and g
                    # will be in different blocks with the gradient clip related ops.
                    # We need to handle the correct block, otherwise will encounter
                    # a 'NotFoundError' during compile time.
                    block = default_main_program().current_block()
682 683 684 685 686
                    block.append_op(
                        type='elementwise_mul',
                        inputs={'X': new_g, 'Y': scale_input},
                        outputs={'Out': new_g},
                    )
687
                    if new_g is not g:
688 689 690 691 692 693 694 695 696
                        block.append_op(
                            type='cast',
                            inputs={'X': new_g},
                            outputs={'Out': g},
                            attrs={
                                'in_dtype': new_g.dtype,
                                'out_dtype': g.dtype,
                            },
                        )
697

W
WangXi 已提交
698 699
                param_new_grad_name_dict[p.name] = g.name
                params_and_grads.append((p, g))
700

701
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
702
        return params_and_grads
F
fengjiayi 已提交
703

Y
yuyang18 已提交
704
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
705 706 707 708
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
709 710
                shape=[1], dtype=grad.dtype, value=self.clip_norm
            )
F
update  
fengjiayi 已提交
711 712 713 714 715
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
716

C
chengduo 已提交
717 718 719 720 721
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

W
WangXi 已提交
722
        local_norm_var = _squared_l2_norm(merge_grad)
F
update  
fengjiayi 已提交
723
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
724

F
update  
fengjiayi 已提交
725
        self.context = context
726

Y
yuyang18 已提交
727
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
728 729 730
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
731
            group_norm_var = paddle.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
732
            clip_var = self.context[self.group_name + "_clip"]
733
            group_scale_var = paddle.divide(
734
                x=clip_var,
H
HongyuJia 已提交
735
                y=paddle.maximum(x=clip_var, y=group_norm_var),
736 737
            )
            assert group_scale_var.shape == (1,)
F
update  
fengjiayi 已提交
738
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
739

W
WangXi 已提交
740
        # inplace
741 742 743 744 745
        param.block.append_op(
            type='elementwise_mul',
            inputs={'X': grad, 'Y': self.context[group_scale_name]},
            outputs={'Out': grad},
        )
C
chengduo 已提交
746

W
WangXi 已提交
747
        return param, grad
F
fengjiayi 已提交
748 749


750
@framework.dygraph_not_support
F
fengjiayi 已提交
751
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
752
    """
753
    :api_attr: Static Graph
754

755
    Warning:
756 757 758

        This API must be used after building network, and before ``minimize`` ,
        and it may be removed in future releases, so it is not recommended.
759 760
        It is recommended to set ``grad_clip`` when initializing the ``optimizer`` ,
        this is a better method to clip gradient. There are three clipping strategies:
761
         :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
762
         :ref:`api_fluid_clip_GradientClipByValue` .
763

764 765 766
    To specify parameters that require gradient clip.

    Args:
767 768 769 770
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default value: None, and there is no
771
            gradient clipping.
Z
Zeng Jinle 已提交
772
        param_list (list(Variable), optional): Parameters that require gradient clip.
773
                It can be a list of parameter or a list of parameter's name.
774
                Default None, meaning that all parameters in the program will be included.
Z
Zeng Jinle 已提交
775
        program (Program, optional): The program where parameters are located.
776 777 778 779 780 781 782
                Default None, meaning that using :ref:`api_fluid_default_main_program` .

    Returns:
        None

    Examples:
        .. code-block:: python
C
Chengmo 已提交
783

784 785 786
            import paddle.fluid as fluid

            def network():
C
Chengmo 已提交
787 788
                image = fluid.data(name='image', shape=[
                                   None, 28], dtype='float32')
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
                param_attr1 = fluid.ParamAttr("fc1_param")
                fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
                param_attr2 = fluid.ParamAttr("fc2_param")
                fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
                loss = fluid.layers.reduce_mean(fc2)
                return loss


            # network 1: clip all parameter gradient
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 2: clip parameter gradient by name
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=["fc1_param", "fc2_param"])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

814
            # network 3: clip parameter gradient by value
815 816 817 818 819 820 821 822 823
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                param_var1 = fluid.default_main_program().global_block().var("fc1_param")
                param_var2 = fluid.default_main_program().global_block().var("fc2_param")
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=[param_var1, param_var2])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
824

825
            # network 4: use 'set_gradient_clip' and 'optimize(grad_clip=clip)' together
826 827 828 829 830 831 832
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
                clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                # Set the gradient clipping strategy: clip1
                fluid.clip.set_gradient_clip(clip1)
                # Set the gradient clipping strategy: clip2
833 834
                sgd = fluid.optimizer.SGD(learning_rate=1e-3, grad_clip=clip2)
                sgd.minimize(loss)
835
                # 'set_gradient_clip' will not take effect when setting has a conflict,
836
                # and the gradient clipping strategy will be 'clip2'
837 838


F
fengjiayi 已提交
839
    """
840 841 842 843 844 845 846 847
    warnings.warn(
        "Caution! 'set_gradient_clip' is not recommended "
        "and may be deprecated in future! "
        "We recommend a new strategy: set 'grad_clip' "
        "when initializing the 'optimizer'. "
        "This method can reduce the mistakes, please "
        "refer to documention of 'optimizer'."
    )
848

849
    if not isinstance(clip, ClipGradBase):
F
fengjiayi 已提交
850
        raise TypeError(
851 852
            "'clip' should be an instance of ClipGradBase's derived class"
        )
F
fengjiayi 已提交
853 854
    if program is None:
        program = framework.default_main_program()
855 856 857

    for op in program.block(0).ops:
        if 'op_namescope' in op.all_attrs() and "optimizer" in op.attr(
858 859
            "op_namescope"
        ):
860 861 862 863 864 865
            warnings.warn(
                "'minimize' has been invoked before, this will make 'set_gradient_clip' "
                "be ineffective! Please invoke 'set_gradient_clip' before 'minimize'."
            )
            break

F
fengjiayi 已提交
866 867
    if param_list is None:
        param_list = program.block(0).all_parameters()
868
    if all(isinstance(elem, str) for elem in param_list):
F
fengjiayi 已提交
869 870 871 872 873 874 875
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
876
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
877 878


879
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
880
    context = dict()
881 882 883
    for p, g in param_grads:
        if g is None:
            continue
884 885 886
        with p.block.program._optimized_guard([p, g]), framework.name_scope(
            'gradient_clip'
        ):
887
            clip_attr = getattr(p, 'gradient_clip_attr', None)
Y
yuyang18 已提交
888
            if clip_attr is None:
889
                return param_grads
890
            if not isinstance(clip_attr, ClipGradBase):
Y
yuyang18 已提交
891
                raise TypeError(
892 893
                    "clip attribute should be an instance of GradientClipBase"
                )
Y
Yu Yang 已提交
894

Y
yuyang18 已提交
895
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
896 897

    res = []
898
    param_new_grad_name_dict = dict()
899 900 901
    for p, g in param_grads:
        if g is None:
            continue
902 903 904
        with p.block.program._optimized_guard([p, g]), framework.name_scope(
            'gradient_clip'
        ):
905
            param, new_grad = clip_attr._create_operators(param=p, grad=g)
906
            param_new_grad_name_dict[param.name] = new_grad.name
907
            res.append([param, new_grad])
Y
Yu Yang 已提交
908

909
    _correct_clip_op_role_var(res, param_new_grad_name_dict)
910 911 912 913
    return res


# change wrong mapping relation between param & grad in clip op
914
# Note: This function is sensitive to the time cost of the network with gradient clipping
915
# and should not be changed easily. If you must change, please test the time cost.
916 917 918 919
def _correct_clip_op_role_var(params_grads, param_new_grad_name_dict):
    block_id_list = []
    if len(param_new_grad_name_dict) == 0:
        return
920 921
    for param, grad in params_grads:
        if grad is None:
922
            continue
923 924 925 926
        block_id = param.block.idx
        if block_id in block_id_list:
            continue
        block_id_list.append(block_id)
927
        for op in param.block.program.global_block().ops:
928 929 930 931 932
            if (
                op.has_attr("op_namescope")
                and "gradient_clip" in op.attr("op_namescope")
                and op.attr('op_role_var')
            ):
933 934 935
                param_name = op.attr('op_role_var')[0]
                if param_name in param_new_grad_name_dict:
                    correct_p_g = [
936 937
                        param_name,
                        param_new_grad_name_dict[param_name],
938
                    ]
C
Chengmo 已提交
939
                    op._set_attr('op_role_var', correct_p_g)
Y
Yu Yang 已提交
940 941


942 943 944 945
GradientClipBase = ClipGradBase
GradientClipByValue = ClipGradByValue
GradientClipByNorm = ClipGradByNorm
GradientClipByGlobalNorm = ClipGradByGlobalNorm