clip.py 37.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

F
fengjiayi 已提交
17
import copy
18
import six
19
import warnings
F
fengjiayi 已提交
20

Y
Yu Yang 已提交
21
import functools
22 23
from . import layers
from . import framework
F
fengjiayi 已提交
24
from . import core
C
Chengmo 已提交
25
from . import name_scope
26
from .dygraph import base as imperative_base
Y
Yu Yang 已提交
27

F
fengjiayi 已提交
28
__all__ = [
29 30
    'set_gradient_clip', 'ErrorClipByValue', 'GradientClipByValue',
    'GradientClipByNorm', 'GradientClipByGlobalNorm'
F
fengjiayi 已提交
31
]
Y
Yu Yang 已提交
32 33


F
fengjiayi 已提交
34
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
35 36 37
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
38
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
39 40 41 42
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
43 44 45
    """
    Clips tensor values to the range [min, max].

46 47
    Given a tensor ``t`` (see Examples below), this operation clips its value \
    to ``min`` and ``max`` inplace.
48 49 50 51 52 53 54

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
55
        will be set to ``-max`` by framework.
56 57 58 59

    Examples:
        .. code-block:: python

60 61 62 63 64 65
            import paddle.fluid as fluid
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
C
Chengmo 已提交
66 67
                image = fluid.layers.data(
                    name='x', shape=[784], dtype='float32')
68 69
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
C
Chengmo 已提交
70 71
                predict = fluid.layers.fc(
                    input=hidden2, size=10, act='softmax')
72 73 74 75 76 77 78
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
79 80
    """

F
fengjiayi 已提交
81 82 83 84 85 86 87 88 89
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
90 91 92
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
93
    def _append_clip_op(self, block, grad_name):
94 95 96 97
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
98 99
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
100 101 102 103 104 105


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
106
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
107
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
108
        error_clip = getattr(fwd_var, "error_clip", None)
F
fengjiayi 已提交
109 110 111 112 113
        if not (error_clip is None or isinstance(error_clip,
                                                 BaseErrorClipAttr)):
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
114
        if error_clip is not None:
Y
yuyang18 已提交
115
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
116 117


118 119 120 121 122 123 124 125 126 127 128
class GradientClipBase(object):
    def __init__(self, need_clip=None):
        if need_clip is not None and not callable(need_clip):
            raise TypeError(
                "The type of need_clip must be funciton, and it can filter out "
                "parameter that does't need gradient clip. This function must return "
                "True or False, and True means that clipping is required. Please refer to "
                "API documention of GradientClipByGlobalNorm / GradientClipByNorm "
                "/GradientClipByValue.")
        self._need_clip_func = need_clip

F
fengjiayi 已提交
129 130 131
    def __str__(self):
        raise NotImplementedError()

132
    @imperative_base.no_grad
133 134
    def _dygraph_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
135

136 137
    def _static_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
138

139 140 141 142 143 144 145 146
    def __call__(self, params_grads):
        if framework.in_dygraph_mode():
            return self._dygraph_clip(params_grads)
        else:
            for p, g in params_grads:
                if getattr(p, 'gradient_clip_attr', None) is not None:
                    warnings.warn(
                        "'set_gradient_clip' will be ineffective, because you have "
147
                        "set 'grad_clip' in 'optimizer'. So, 'set_gradient_clip' "
148 149 150
                        "is redundant and you can remove it.")
                    break
            return self._static_clip(params_grads)
F
fengjiayi 已提交
151

Y
yuyang18 已提交
152
    def _process_context(self, context, param, grad):
153
        raise NotImplementedError()
Y
Yu Yang 已提交
154

Y
yuyang18 已提交
155
    def _create_operators(self, param, grad):
156
        raise NotImplementedError()
Y
Yu Yang 已提交
157 158


159
class GradientClipByValue(GradientClipBase):
160
    """
161 162 163 164
    :alias_main: paddle.nn.GradientClipByValue
	:alias: paddle.nn.GradientClipByValue,paddle.nn.clip.GradientClipByValue
	:old_api: paddle.fluid.clip.GradientClipByValue

165 166
    Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max].
    
167
    - Any values less than min are set to ``min``.
168
    
169
    - Any values greater than max are set to ``max``.
170

171 172 173
    The multi-dimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
174
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
175 176
    (for example: :ref:`api_fluid_optimizer_SGDOptimizer`).
    
177 178
    Args:
        max (float): The maximum value to clip by.
179 180 181 182 183
        min (float, optional): The minimum value to clip by. if not set by user, it will be set to ``-max`` 
            automatically. In this case, ``max`` must be greater than 0.
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
184 185 186

    Examples:
        .. code-block:: python
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        
            # use for Static mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
                        
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(
                    main_program=main_prog, startup_program=startup_prog):
                image = fluid.data(
                    name='x', shape=[-1, 2], dtype='float32')
                predict = fluid.layers.fc(input=image, size=3, act='relu') # Trainable parameters: fc_0.w.0, fc_0.b.0
                loss = fluid.layers.mean(predict)
                
                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByValue(min=-1, max=1)
                
                # Clip a part of parameters in network: (e.g. fc_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a Parameter, and return bool
                # def fileter_func(Parameter):
                # # It can be easily filtered by Parameter.name (name can be set in fluid.ParamAttr, and the default name is fc_0.w_0, fc_0.b_0)
                #   return Parameter.name=="fc_0.w_0"
                # clip = fluid.clip.GradientClipByValue(min=-1, max=1, need_clip=fileter_func)

212 213
                sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1, grad_clip=clip)
                sgd_optimizer.minimize(loss)
214 215 216 217 218 219 220

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x = np.random.uniform(-100, 100, (10, 2)).astype('float32')
            exe.run(startup_prog)
            out = exe.run(main_prog, feed={'x': x}, fetch_list=loss)
        
221

222 223
            # use for Dygraph mode
            import paddle
224
            import paddle.fluid as fluid
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            
            with fluid.dygraph.guard():
                linear = fluid.dygraph.Linear(10, 10)  # Trainable parameters:: linear_0.w.0, linear_0.b.0
                inputs = fluid.layers.uniform_random([32, 10]).astype('float32')
                out = linear(fluid.dygraph.to_variable(inputs))
                loss = fluid.layers.reduce_mean(out)
                loss.backward()

                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByValue(min=-1, max=1)

                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(ParamBase):
                # # It can be easily filtered by ParamBase.name(name can be set in fluid.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
                #   return ParamBase.name == "linear_0.w_0"
                # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
                #   return ParamBase.name == linear.weight.name
                # clip = fluid.clip.GradientClipByValue(min=-1, max=1, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGD(
246 247
                    learning_rate=0.1, parameter_list=linear.parameters(), grad_clip=clip)
                sgd_optimizer.minimize(loss)
248 249
    """

250 251
    def __init__(self, max, min=None, need_clip=None):
        super(GradientClipByValue, self).__init__(need_clip)
Y
Yu Yang 已提交
252
        if min is None:
253
            assert (max > 0.0)
Y
Yu Yang 已提交
254
            min = -max
255 256
        self.max = float(max)
        self.min = float(min)
Y
Yu Yang 已提交
257

F
fengjiayi 已提交
258
    def __str__(self):
259 260
        return "Gradient Clip By Value, min = %f, max=%f" % (self.min, self.max)

261
    @imperative_base.no_grad
262 263 264 265 266 267 268 269 270 271 272 273 274 275
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip(x=g, min=self.min, max=self.max)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
276
        param_new_grad_name_dict = dict()
277 278 279 280 281 282 283 284 285 286 287 288
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip(x=g, min=self.min, max=self.max)
                params_and_grads.append((p, new_grad))
289 290
                param_new_grad_name_dict[p.name] = new_grad.name
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
291
        return params_and_grads
F
fengjiayi 已提交
292

Y
yuyang18 已提交
293
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
294 295
        pass

Y
yuyang18 已提交
296
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
297 298 299 300
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


301
class GradientClipByNorm(GradientClipBase):
C
Chengmo 已提交
302
    """
303 304 305 306
    :alias_main: paddle.nn.GradientClipByNorm
	:alias: paddle.nn.GradientClipByNorm,paddle.nn.clip.GradientClipByNorm
	:old_api: paddle.fluid.clip.GradientClipByNorm

307 308 309 310 311 312 313 314 315
    Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` .
    
    - If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio.
    
    - If the l2 norm of :math:`X` is less than or equal to ``clip_norm`` , nothing will be done.
    
    The multidimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
316
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
317 318 319
    (for example: :ref:`api_fluid_optimizer_SGDOptimizer`).
    
    The clipping formula is:
320 321

    .. math::
322
        Out =
C
Chengmo 已提交
323 324 325 326 327 328
        \\left \{
        \\begin{aligned}
        & X & & if (norm(X) \\leq clip\_norm) \\\\
        & \\frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\\\
        \\end{aligned}
        \\right.
329 330 331 332


    where :math:`norm(X)` represents the L2 norm of :math:`X`.

333
    .. math::
C
Chengmo 已提交
334
        norm(X) = ( \\sum_{i=1}^{n}|x\_i|^2)^{ \\frac{1}{2}}
335

336
    Args:
337 338 339 340
        clip_norm(float): The maximum norm value.
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
C
Chengmo 已提交
341

342 343
    Examples:
        .. code-block:: python
344 345
        
            # use for Static mode
346
            import paddle
347 348 349 350 351
            import paddle.fluid as fluid
            import numpy as np
                        
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
352
            with fluid.program_guard(
353
                    main_program=main_prog, startup_program=startup_prog):
C
Chengmo 已提交
354
                image = fluid.data(
355 356 357 358 359 360 361 362 363 364 365 366 367 368
                    name='x', shape=[-1, 2], dtype='float32')
                predict = fluid.layers.fc(input=image, size=3, act='relu') # Trainable parameters: fc_0.w.0, fc_0.b.0
                loss = fluid.layers.mean(predict)
                
                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                
                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a Parameter, and return bool
                # def fileter_func(Parameter):
                # # It can be easily filtered by Parameter.name (name can be set in fluid.ParamAttr, and the default name is fc_0.w_0, fc_0.b_0)
                #   return Parameter.name=="fc_0.w_0"
                # clip = fluid.clip.GradientClipByNorm(clip_norm=1.0, need_clip=fileter_func)

369 370
                sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1, grad_clip=clip)
                sgd_optimizer.minimize(loss)
371 372

            place = fluid.CPUPlace()
373
            exe = fluid.Executor(place)
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
            x = np.random.uniform(-100, 100, (10, 2)).astype('float32')
            exe.run(startup_prog)
            out = exe.run(main_prog, feed={'x': x}, fetch_list=loss)
            


            # use for Dygraph mode
            import paddle
            import paddle.fluid as fluid
            
            with fluid.dygraph.guard():
                linear = fluid.dygraph.Linear(10, 10)  # Trainable: linear_0.w.0, linear_0.b.0
                inputs = fluid.layers.uniform_random([32, 10]).astype('float32')
                out = linear(fluid.dygraph.to_variable(inputs))
                loss = fluid.layers.reduce_mean(out)
                loss.backward()

                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByNorm(clip_norm=1.0)

                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(ParamBase):
                # # It can be easily filtered by ParamBase.name(name can be set in fluid.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
                #   return ParamBase.name == "linear_0.w_0"
                # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
                #   return ParamBase.name == linear.weight.name
                # clip = fluid.clip.GradientClipByNorm(clip_norm=1.0, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGD(
404 405
                    learning_rate=0.1, parameter_list=linear.parameters(), grad_clip=clip)
                sgd_optimizer.minimize(loss)
406 407 408

    """

409 410 411
    def __init__(self, clip_norm, need_clip=None):
        super(GradientClipByNorm, self).__init__(need_clip)
        self.clip_norm = float(clip_norm)
F
fengjiayi 已提交
412

F
fengjiayi 已提交
413
    def __str__(self):
414 415
        return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm

416
    @imperative_base.no_grad
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        with framework.name_scope('gradient_clip'):
432
            param_new_grad_name_dict = dict()
433 434 435 436 437 438 439 440 441 442
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
443
                param_new_grad_name_dict[p.name] = new_grad.name
444
                params_and_grads.append((p, new_grad))
445
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
446
        return params_and_grads
F
fengjiayi 已提交
447

Y
yuyang18 已提交
448
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
449 450
        pass

Y
yuyang18 已提交
451
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
452 453 454 455
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


456
class GradientClipByGlobalNorm(GradientClipBase):
457
    """
458 459 460 461
    :alias_main: paddle.nn.GradientClipByGlobalNorm
	:alias: paddle.nn.GradientClipByGlobalNorm,paddle.nn.clip.GradientClipByGlobalNorm
	:old_api: paddle.fluid.clip.GradientClipByGlobalNorm

462 463 464 465 466 467 468 469 470 471
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in 
    :math:`t\_list` , and limit it to ``clip_norm`` .
    
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
    
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
    
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
472
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
473 474 475
    (for example: :ref:`api_fluid_optimizer_SGDOptimizer`).

    The clipping formula is:
476 477 478 479 480 481 482 483 484 485 486 487

    .. math::

        t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    Args:
488 489 490 491 492
        clip_norm (float): The maximum norm value.
        group_name (str, optional): The group name for this clip. Default value is ``default_group``
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
493 494 495

    Examples:
        .. code-block:: python
496 497
        
            # use for Static mode
498
            import paddle
499 500 501 502 503
            import paddle.fluid as fluid
            import numpy as np
                        
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
504
            with fluid.program_guard(
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
                    main_program=main_prog, startup_program=startup_prog):
                image = fluid.data(
                    name='x', shape=[-1, 2], dtype='float32')
                predict = fluid.layers.fc(input=image, size=3, act='relu') # Trainable parameters: fc_0.w.0, fc_0.b.0
                loss = fluid.layers.mean(predict)
                
                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)
                
                # Clip a part of parameters in network: (e.g. fc_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(Parameter):
                # # It can be easily filtered by Parameter.name (name can be set in fluid.ParamAttr, and the default name is fc_0.w_0, fc_0.b_0)
                #   return Parameter.name=="fc_0.w_0"
                # clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0, need_clip=fileter_func)

521 522
                sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1, grad_clip=clip)
                sgd_optimizer.minimize(loss)
523 524 525 526 527 528

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x = np.random.uniform(-100, 100, (10, 2)).astype('float32')
            exe.run(startup_prog)
            out = exe.run(main_prog, feed={'x': x}, fetch_list=loss)
529

530

531 532 533
            # use for Dygraph mode
            import paddle
            import paddle.fluid as fluid
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
            with fluid.dygraph.guard():
                linear = fluid.dygraph.Linear(10, 10)  # Trainable: linear_0.w.0, linear_0.b.0
                inputs = fluid.layers.uniform_random([32, 10]).astype('float32')
                out = linear(fluid.dygraph.to_variable(inputs))
                loss = fluid.layers.reduce_mean(out)
                loss.backward()

                # Clip all parameters in network:
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)

                # Clip a part of parameters in network: (e.g. linear_0.w_0)
                # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
                # def fileter_func(ParamBase):
                # # It can be easily filtered by ParamBase.name(name can be set in fluid.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
                #   return ParamBase.name == "linear_0.w_0"
                # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
                #   return ParamBase.name == linear.weight.name
                # clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0, need_clip=fileter_func)

                sgd_optimizer = fluid.optimizer.SGD(
555 556
                    learning_rate=0.1, parameter_list=linear.parameters(), grad_clip=clip)
                sgd_optimizer.minimize(loss)
557

558 559
    """

560 561 562
    def __init__(self, clip_norm, group_name="default_group", need_clip=None):
        super(GradientClipByGlobalNorm, self).__init__(need_clip)
        self.clip_norm = float(clip_norm)
F
update  
fengjiayi 已提交
563
        self.group_name = group_name
564

F
fengjiayi 已提交
565
    def __str__(self):
566 567
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

568
    @imperative_base.no_grad
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                continue
            merge_grad = g
            if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
            square = layers.square(merge_grad)
            sum_square = layers.reduce_sum(square)
            sum_square_list.append(sum_square)

        # all parameters have been filterd out
        if len(sum_square_list) == 0:
            return params_grads

        global_norm_var = layers.concat(sum_square_list)
        global_norm_var = layers.reduce_sum(global_norm_var)
        global_norm_var = layers.sqrt(global_norm_var)
        max_global_norm = layers.fill_constant(
593
            shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
        clip_var = layers.elementwise_div(
            x=max_global_norm,
            y=layers.elementwise_max(
                x=global_norm_var, y=max_global_norm))
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.elementwise_mul(x=g, y=clip_var)
            params_and_grads.append((p, new_grad))

        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    continue
                merge_grad = g
                with p.block.program._optimized_guard([p, g]):
                    if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                        merge_grad = layers.merge_selected_rows(g)
                        merge_grad = layers.get_tensor_from_selected_rows(
                            merge_grad)

                    square = layers.square(merge_grad)
                    sum_square = layers.reduce_sum(input=square)
                    sum_square_list.append(sum_square)

            # all parameters have been filterd out
            if len(sum_square_list) == 0:
                return params_grads

            with p.block.program._optimized_guard([p, g]):
                global_norm_var = layers.sums(sum_square_list)
                global_norm_var = layers.sqrt(x=global_norm_var)
                max_global_norm = layers.fill_constant(
638 639 640
                    shape=[1],
                    dtype=global_norm_var.dtype,
                    value=self.clip_norm)
641 642 643 644 645
                scale_var = layers.elementwise_div(
                    x=max_global_norm,
                    y=layers.elementwise_max(
                        x=max_global_norm, y=global_norm_var))

646
            param_new_grad_name_dict = dict()
647 648 649 650 651 652 653 654 655 656
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.elementwise_mul(x=g, y=scale_var)
657
                param_new_grad_name_dict[p.name] = new_grad.name
658 659
                params_and_grads.append((p, new_grad))

660
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
661
        return params_and_grads
F
fengjiayi 已提交
662

Y
yuyang18 已提交
663
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
664 665 666 667
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
668
                shape=[1], dtype=grad.dtype, value=self.clip_norm)
F
update  
fengjiayi 已提交
669 670 671 672 673
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
674

C
chengduo 已提交
675 676 677 678 679 680
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

        square = layers.square(merge_grad)
P
phlrain 已提交
681
        local_norm_var = layers.reduce_sum(input=square)
F
update  
fengjiayi 已提交
682
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
683

F
update  
fengjiayi 已提交
684
        self.context = context
685

Y
yuyang18 已提交
686
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
687 688 689
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
690
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
691 692 693
            clip_var = self.context[self.group_name + "_clip"]
            group_scale_var = layers.elementwise_div(
                x=clip_var,
F
fengjiayi 已提交
694
                y=layers.elementwise_max(
F
update  
fengjiayi 已提交
695
                    x=clip_var, y=group_norm_var))
696
            assert group_scale_var.shape == (1, )
F
update  
fengjiayi 已提交
697
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
698

F
update  
fengjiayi 已提交
699 700
        new_grad = layers.elementwise_mul(
            x=grad, y=self.context[group_scale_name])
C
chengduo 已提交
701

702
        return param, new_grad
F
fengjiayi 已提交
703 704


705
@framework.dygraph_not_support
F
fengjiayi 已提交
706
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
707
    """
708 709
    :api_attr: Static Graph
    
710 711 712 713
    Warning:
    
        This API must be used after building network, and before ``minimize`` , 
        and it may be removed in future releases, so it is not recommended. 
714 715 716 717
        It is recommended to set ``grad_clip`` when initializing the ``optimizer`` ,
        this is a better method to clip gradient. There are three clipping strategies:
         :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
         :ref:`api_fluid_clip_GradientClipByValue` .
718
        
719 720 721
    To specify parameters that require gradient clip.

    Args:
722 723 724 725 726
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default value: None, and there is no 
            gradient clipping.
Z
Zeng Jinle 已提交
727
        param_list (list(Variable), optional): Parameters that require gradient clip.
728
                It can be a list of parameter or a list of parameter's name.
729
                Default None, meaning that all parameters in the program will be included.
Z
Zeng Jinle 已提交
730
        program (Program, optional): The program where parameters are located.
731 732 733 734 735 736 737
                Default None, meaning that using :ref:`api_fluid_default_main_program` .

    Returns:
        None

    Examples:
        .. code-block:: python
C
Chengmo 已提交
738

739 740 741
            import paddle.fluid as fluid

            def network():
C
Chengmo 已提交
742 743
                image = fluid.data(name='image', shape=[
                                   None, 28], dtype='float32')
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
                param_attr1 = fluid.ParamAttr("fc1_param")
                fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
                param_attr2 = fluid.ParamAttr("fc2_param")
                fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
                loss = fluid.layers.reduce_mean(fc2)
                return loss


            # network 1: clip all parameter gradient
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 2: clip parameter gradient by name
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=["fc1_param", "fc2_param"])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

769
            # network 3: clip parameter gradient by value
770 771 772 773 774 775 776 777 778
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                param_var1 = fluid.default_main_program().global_block().var("fc1_param")
                param_var2 = fluid.default_main_program().global_block().var("fc2_param")
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=[param_var1, param_var2])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
779
            
780
            # network 4: use 'set_gradient_clip' and 'optimize(grad_clip=clip)' together
781 782 783 784 785 786 787
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
                clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                # Set the gradient clipping strategy: clip1
                fluid.clip.set_gradient_clip(clip1)
                # Set the gradient clipping strategy: clip2
788 789
                sgd = fluid.optimizer.SGD(learning_rate=1e-3, grad_clip=clip2)
                sgd.minimize(loss)
790 791 792 793
                # 'set_gradient_clip' will not take effect when setting has a conflict, 
                # and the gradient clipping strategy will be 'clip2'
            
            
F
fengjiayi 已提交
794
    """
795 796
    warnings.warn("Caution! 'set_gradient_clip' is not recommended "
                  "and may be deprecated in future! "
797 798
                  "We recommend a new strategy: set 'grad_clip' "
                  "when initializing the 'optimizer'. "
799
                  "This method can reduce the mistakes, please "
800
                  "refer to documention of 'optimizer'.")
801 802

    if not isinstance(clip, GradientClipBase):
F
fengjiayi 已提交
803
        raise TypeError(
804
            "'clip' should be an instance of GradientClipBase's derived class")
F
fengjiayi 已提交
805 806
    if program is None:
        program = framework.default_main_program()
807 808 809 810 811 812 813 814 815 816

    for op in program.block(0).ops:
        if 'op_namescope' in op.all_attrs() and "optimizer" in op.attr(
                "op_namescope"):
            warnings.warn(
                "'minimize' has been invoked before, this will make 'set_gradient_clip' "
                "be ineffective! Please invoke 'set_gradient_clip' before 'minimize'."
            )
            break

F
fengjiayi 已提交
817 818
    if param_list is None:
        param_list = program.block(0).all_parameters()
819
    if all(isinstance(elem, six.string_types) for elem in param_list):
F
fengjiayi 已提交
820 821 822 823 824 825 826
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
827
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
828 829


830
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
831
    context = dict()
832 833 834
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
835
        with p.block.program._optimized_guard(
836 837
            [p, g]), framework.name_scope('gradient_clip_@CLIP'):
            clip_attr = getattr(p, 'gradient_clip_attr', None)
Y
yuyang18 已提交
838
            if clip_attr is None:
839 840
                return param_grads
            if not isinstance(clip_attr, GradientClipBase):
Y
yuyang18 已提交
841
                raise TypeError(
842
                    "clip attribute should be an instance of GradientClipBase")
Y
Yu Yang 已提交
843

Y
yuyang18 已提交
844
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
845 846

    res = []
847
    param_new_grad_name_dict = dict()
848 849 850
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
851
        with p.block.program._optimized_guard(
852
            [p, g]), framework.name_scope('graident_clip_@CLIP'):
853
            param, new_grad = clip_attr._create_operators(param=p, grad=g)
854
            param_new_grad_name_dict[param.name] = new_grad.name
855
            res.append([param, new_grad])
Y
Yu Yang 已提交
856

857
    _correct_clip_op_role_var(res, param_new_grad_name_dict)
858 859 860 861
    return res


# change wrong mapping relation between param & grad in clip op
862 863
# Note: This function is sensitive to the time cost of the network with gradient clipping 
# and should not be changed easily. If you must change, please test the time cost.
864 865 866 867
def _correct_clip_op_role_var(params_grads, param_new_grad_name_dict):
    block_id_list = []
    if len(param_new_grad_name_dict) == 0:
        return
868 869
    for param, grad in params_grads:
        if grad is None:
870
            continue
871 872 873 874
        block_id = param.block.idx
        if block_id in block_id_list:
            continue
        block_id_list.append(block_id)
875 876
        for op in param.block.program.global_block().ops:
            if 'op_namescope' in op.all_attrs() and "gradient_clip" in op.attr(
877 878 879 880 881 882
                    "op_namescope") and op.attr('op_role_var'):
                param_name = op.attr('op_role_var')[0]
                if param_name in param_new_grad_name_dict:
                    correct_p_g = [
                        param_name, param_new_grad_name_dict[param_name]
                    ]
C
Chengmo 已提交
883
                    op._set_attr('op_role_var', correct_p_g)
Y
Yu Yang 已提交
884 885 886


ClipByValue = GradientClipByValue
F
fengjiayi 已提交
887 888
ClipByNorm = GradientClipByNorm
ClipByGlobalNorm = GradientClipByGlobalNorm