clip.py 31.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

F
fengjiayi 已提交
17
import copy
18
import six
19
import warnings
F
fengjiayi 已提交
20

Y
Yu Yang 已提交
21
import functools
22 23
from . import layers
from . import framework
F
fengjiayi 已提交
24
from . import core
C
Chengmo 已提交
25
from . import name_scope
26
from .dygraph import base as imperative_base
Y
Yu Yang 已提交
27

F
fengjiayi 已提交
28
__all__ = [
29 30
    'set_gradient_clip', 'ErrorClipByValue', 'GradientClipByValue',
    'GradientClipByNorm', 'GradientClipByGlobalNorm'
F
fengjiayi 已提交
31
]
Y
Yu Yang 已提交
32 33


F
fengjiayi 已提交
34
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
35 36 37
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
38
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
39 40 41 42
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
43 44 45
    """
    Clips tensor values to the range [min, max].

46 47
    Given a tensor ``t`` (see Examples below), this operation clips its value \
    to ``min`` and ``max`` inplace.
48 49 50 51 52 53 54

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
55
        will be set to ``-max`` by framework.
56 57 58 59

    Examples:
        .. code-block:: python

60 61 62 63 64 65
            import paddle.fluid as fluid
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
C
Chengmo 已提交
66 67
                image = fluid.layers.data(
                    name='x', shape=[784], dtype='float32')
68 69
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
C
Chengmo 已提交
70 71
                predict = fluid.layers.fc(
                    input=hidden2, size=10, act='softmax')
72 73 74 75 76 77 78
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
79 80
    """

F
fengjiayi 已提交
81 82 83 84 85 86 87 88 89
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
90 91 92
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
93
    def _append_clip_op(self, block, grad_name):
94 95 96 97
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
98 99
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
100 101 102 103 104 105


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
106
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
107
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
108
        error_clip = getattr(fwd_var, "error_clip", None)
F
fengjiayi 已提交
109 110 111 112 113
        if not (error_clip is None or isinstance(error_clip,
                                                 BaseErrorClipAttr)):
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
114
        if error_clip is not None:
Y
yuyang18 已提交
115
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
116 117


118 119 120 121 122 123 124 125 126 127 128
class GradientClipBase(object):
    def __init__(self, need_clip=None):
        if need_clip is not None and not callable(need_clip):
            raise TypeError(
                "The type of need_clip must be funciton, and it can filter out "
                "parameter that does't need gradient clip. This function must return "
                "True or False, and True means that clipping is required. Please refer to "
                "API documention of GradientClipByGlobalNorm / GradientClipByNorm "
                "/GradientClipByValue.")
        self._need_clip_func = need_clip

F
fengjiayi 已提交
129 130 131
    def __str__(self):
        raise NotImplementedError()

132
    @imperative_base.no_grad
133 134
    def _dygraph_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
135

136 137
    def _static_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
138

139 140 141 142 143 144 145 146
    def __call__(self, params_grads):
        if framework.in_dygraph_mode():
            return self._dygraph_clip(params_grads)
        else:
            for p, g in params_grads:
                if getattr(p, 'gradient_clip_attr', None) is not None:
                    warnings.warn(
                        "'set_gradient_clip' will be ineffective, because you have "
147
                        "set 'grad_clip' in 'optimizer'. So, 'set_gradient_clip' "
148 149 150
                        "is redundant and you can remove it.")
                    break
            return self._static_clip(params_grads)
F
fengjiayi 已提交
151

Y
yuyang18 已提交
152
    def _process_context(self, context, param, grad):
153
        raise NotImplementedError()
Y
Yu Yang 已提交
154

Y
yuyang18 已提交
155
    def _create_operators(self, param, grad):
156
        raise NotImplementedError()
Y
Yu Yang 已提交
157 158


159
class GradientClipByValue(GradientClipBase):
160
    """
161 162
    Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max].
    
163
    - Any values less than min are set to ``min``.
164
    
165
    - Any values greater than max are set to ``max``.
166

167 168 169
    The multi-dimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
170
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
171
    (for example: :ref:`api_paddle_optimizer_SGD`).
172
    
173 174
    Args:
        max (float): The maximum value to clip by.
175 176 177 178 179
        min (float, optional): The minimum value to clip by. if not set by user, it will be set to ``-max`` 
            automatically. In this case, ``max`` must be greater than 0.
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
180 181 182

    Examples:
        .. code-block:: python
183 184
        
            import paddle
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
            linear = paddle.nn.Linear(10, 10)
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

            # clip all parameters in network:
            clip = paddle.nn.GradientClipByValue(min=-1, max=1)

            # clip a part of parameters in network: (e.g. linear_0.w_0)
            # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
            # def fileter_func(ParamBase):
            # # It can be easily filtered by ParamBase.name(name can be set in paddle.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
            #   return ParamBase.name == "linear_0.w_0"
            # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
            #   return ParamBase.name == linear.weight.name
            # clip = paddle.nn.GradientClipByValue(min=-1, max=1, need_clip=fileter_func)

            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
206 207
    """

208 209
    def __init__(self, max, min=None, need_clip=None):
        super(GradientClipByValue, self).__init__(need_clip)
Y
Yu Yang 已提交
210
        if min is None:
211
            assert (max > 0.0)
Y
Yu Yang 已提交
212
            min = -max
213 214
        self.max = float(max)
        self.min = float(min)
Y
Yu Yang 已提交
215

F
fengjiayi 已提交
216
    def __str__(self):
217 218
        return "Gradient Clip By Value, min = %f, max=%f" % (self.min, self.max)

219
    @imperative_base.no_grad
220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip(x=g, min=self.min, max=self.max)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
234
        param_new_grad_name_dict = dict()
235 236 237 238 239 240 241 242 243 244 245 246
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip(x=g, min=self.min, max=self.max)
                params_and_grads.append((p, new_grad))
247 248
                param_new_grad_name_dict[p.name] = new_grad.name
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
249
        return params_and_grads
F
fengjiayi 已提交
250

Y
yuyang18 已提交
251
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
252 253
        pass

Y
yuyang18 已提交
254
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
255 256 257 258
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


259
class GradientClipByNorm(GradientClipBase):
C
Chengmo 已提交
260
    """
261 262 263 264 265 266 267 268 269
    Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` .
    
    - If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio.
    
    - If the l2 norm of :math:`X` is less than or equal to ``clip_norm`` , nothing will be done.
    
    The multidimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
270
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
271
    (for example: :ref:`api_paddle_optimizer_SGD`).
272 273
    
    The clipping formula is:
274 275

    .. math::
276
        Out =
C
Chengmo 已提交
277 278 279 280 281 282
        \\left \{
        \\begin{aligned}
        & X & & if (norm(X) \\leq clip\_norm) \\\\
        & \\frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\\\
        \\end{aligned}
        \\right.
283 284 285 286


    where :math:`norm(X)` represents the L2 norm of :math:`X`.

287
    .. math::
C
Chengmo 已提交
288
        norm(X) = ( \\sum_{i=1}^{n}|x\_i|^2)^{ \\frac{1}{2}}
289

290
    Args:
291 292 293 294
        clip_norm(float): The maximum norm value.
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
C
Chengmo 已提交
295

296 297
    Examples:
        .. code-block:: python
298 299
        
            import paddle
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
            linear = paddle.nn.Linear(10, 10)
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

            # clip all parameters in network:
            clip = paddle.nn.GradientClipByNorm(clip_norm=1.0)

            # clip a part of parameters in network: (e.g. linear_0.w_0)
            # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
            # def fileter_func(ParamBase):
            # # It can be easily filtered by ParamBase.name(name can be set in paddle.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
            #   return ParamBase.name == "linear_0.w_0"
            # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
            #   return ParamBase.name == linear.weight.name
            # clip = paddle.nn.GradientClipByNorm(clip_norm=1.0, need_clip=fileter_func)

            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
321 322
    """

323 324 325
    def __init__(self, clip_norm, need_clip=None):
        super(GradientClipByNorm, self).__init__(need_clip)
        self.clip_norm = float(clip_norm)
F
fengjiayi 已提交
326

F
fengjiayi 已提交
327
    def __str__(self):
328 329
        return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm

330
    @imperative_base.no_grad
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        with framework.name_scope('gradient_clip'):
346
            param_new_grad_name_dict = dict()
347 348 349 350 351 352 353 354 355 356
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
357
                param_new_grad_name_dict[p.name] = new_grad.name
358
                params_and_grads.append((p, new_grad))
359
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
360
        return params_and_grads
F
fengjiayi 已提交
361

Y
yuyang18 已提交
362
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
363 364
        pass

Y
yuyang18 已提交
365
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
366 367 368 369
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


370
class GradientClipByGlobalNorm(GradientClipBase):
371
    """
372 373 374 375 376 377 378 379 380 381
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in 
    :math:`t\_list` , and limit it to ``clip_norm`` .
    
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
    
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
    
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters in ``Program`` . If ``need_clip``
    is not None, then only part of gradients can be selected for gradient clipping.
    
382
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
383
    (for example: :ref:`api_paddle_optimizer_SGD`).
384 385

    The clipping formula is:
386 387 388 389 390 391 392 393 394 395 396 397

    .. math::

        t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    Args:
398 399 400 401 402
        clip_norm (float): The maximum norm value.
        group_name (str, optional): The group name for this clip. Default value is ``default_group``
        need_clip (function, optional): Type: function. This function accepts a ``Parameter`` and returns ``bool`` 
            (True: the gradient of this ``Parameter`` need to be clipped, False: not need). Default: None, 
            and gradients of all parameters in the network will be clipped.
403 404 405

    Examples:
        .. code-block:: python
406
        
407 408
            import paddle

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
            linear = paddle.nn.Linear(10, 10)
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

            # clip all parameters in network:
            clip = paddle.nn.GradientClipByGlobalNorm(clip_norm=1.0)

            # clip a part of parameters in network: (e.g. linear_0.w_0)
            # pass a function(fileter_func) to need_clip, and fileter_func receive a ParamBase, and return bool
            # def fileter_func(ParamBase):
            # # It can be easily filtered by ParamBase.name(name can be set in paddle.ParamAttr, and the default name is linear_0.w_0, linear_0.b_0)
            #   return ParamBase.name == "linear_0.w_0"
            # # Note: linear.weight and linear.bias can return the weight and bias of dygraph.Linear, respectively, and can be used to filter
            #   return ParamBase.name == linear.weight.name
            # clip = paddle.nn.GradientClipByGlobalNorm(clip_norm=1.0, need_clip=fileter_func)

            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
429 430
    """

431 432 433
    def __init__(self, clip_norm, group_name="default_group", need_clip=None):
        super(GradientClipByGlobalNorm, self).__init__(need_clip)
        self.clip_norm = float(clip_norm)
F
update  
fengjiayi 已提交
434
        self.group_name = group_name
435

F
fengjiayi 已提交
436
    def __str__(self):
437 438
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

439
    @imperative_base.no_grad
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                continue
            merge_grad = g
            if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
            square = layers.square(merge_grad)
            sum_square = layers.reduce_sum(square)
            sum_square_list.append(sum_square)

        # all parameters have been filterd out
        if len(sum_square_list) == 0:
            return params_grads

        global_norm_var = layers.concat(sum_square_list)
        global_norm_var = layers.reduce_sum(global_norm_var)
        global_norm_var = layers.sqrt(global_norm_var)
        max_global_norm = layers.fill_constant(
464
            shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm)
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        clip_var = layers.elementwise_div(
            x=max_global_norm,
            y=layers.elementwise_max(
                x=global_norm_var, y=max_global_norm))
        for p, g in params_grads:
            if g is None:
                continue
            if self._need_clip_func is not None and not self._need_clip_func(p):
                params_and_grads.append((p, g))
                continue
            new_grad = layers.elementwise_mul(x=g, y=clip_var)
            params_and_grads.append((p, new_grad))

        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    continue
                merge_grad = g
                with p.block.program._optimized_guard([p, g]):
                    if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                        merge_grad = layers.merge_selected_rows(g)
                        merge_grad = layers.get_tensor_from_selected_rows(
                            merge_grad)

                    square = layers.square(merge_grad)
                    sum_square = layers.reduce_sum(input=square)
                    sum_square_list.append(sum_square)

            # all parameters have been filterd out
            if len(sum_square_list) == 0:
                return params_grads

            with p.block.program._optimized_guard([p, g]):
                global_norm_var = layers.sums(sum_square_list)
                global_norm_var = layers.sqrt(x=global_norm_var)
                max_global_norm = layers.fill_constant(
509 510 511
                    shape=[1],
                    dtype=global_norm_var.dtype,
                    value=self.clip_norm)
512 513 514 515 516
                scale_var = layers.elementwise_div(
                    x=max_global_norm,
                    y=layers.elementwise_max(
                        x=max_global_norm, y=global_norm_var))

517
            param_new_grad_name_dict = dict()
518 519 520 521 522 523 524 525 526 527
            for p, g in params_grads:
                if g is None:
                    continue
                if self._need_clip_func is not None and not self._need_clip_func(
                        p):
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.elementwise_mul(x=g, y=scale_var)
528
                param_new_grad_name_dict[p.name] = new_grad.name
529 530
                params_and_grads.append((p, new_grad))

531
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
532
        return params_and_grads
F
fengjiayi 已提交
533

Y
yuyang18 已提交
534
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
535 536 537 538
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
539
                shape=[1], dtype=grad.dtype, value=self.clip_norm)
F
update  
fengjiayi 已提交
540 541 542 543 544
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
545

C
chengduo 已提交
546 547 548 549 550 551
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

        square = layers.square(merge_grad)
P
phlrain 已提交
552
        local_norm_var = layers.reduce_sum(input=square)
F
update  
fengjiayi 已提交
553
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
554

F
update  
fengjiayi 已提交
555
        self.context = context
556

Y
yuyang18 已提交
557
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
558 559 560
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
561
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
562 563 564
            clip_var = self.context[self.group_name + "_clip"]
            group_scale_var = layers.elementwise_div(
                x=clip_var,
F
fengjiayi 已提交
565
                y=layers.elementwise_max(
F
update  
fengjiayi 已提交
566
                    x=clip_var, y=group_norm_var))
567
            assert group_scale_var.shape == (1, )
F
update  
fengjiayi 已提交
568
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
569

F
update  
fengjiayi 已提交
570 571
        new_grad = layers.elementwise_mul(
            x=grad, y=self.context[group_scale_name])
C
chengduo 已提交
572

573
        return param, new_grad
F
fengjiayi 已提交
574 575


576
@framework.dygraph_not_support
F
fengjiayi 已提交
577
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
578
    """
579 580
    :api_attr: Static Graph
    
581 582 583 584
    Warning:
    
        This API must be used after building network, and before ``minimize`` , 
        and it may be removed in future releases, so it is not recommended. 
585 586 587 588
        It is recommended to set ``grad_clip`` when initializing the ``optimizer`` ,
        this is a better method to clip gradient. There are three clipping strategies:
         :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
         :ref:`api_fluid_clip_GradientClipByValue` .
589
        
590 591 592
    To specify parameters that require gradient clip.

    Args:
593 594 595 596 597
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default value: None, and there is no 
            gradient clipping.
Z
Zeng Jinle 已提交
598
        param_list (list(Variable), optional): Parameters that require gradient clip.
599
                It can be a list of parameter or a list of parameter's name.
600
                Default None, meaning that all parameters in the program will be included.
Z
Zeng Jinle 已提交
601
        program (Program, optional): The program where parameters are located.
602 603 604 605 606 607 608
                Default None, meaning that using :ref:`api_fluid_default_main_program` .

    Returns:
        None

    Examples:
        .. code-block:: python
C
Chengmo 已提交
609

610 611 612
            import paddle.fluid as fluid

            def network():
C
Chengmo 已提交
613 614
                image = fluid.data(name='image', shape=[
                                   None, 28], dtype='float32')
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                param_attr1 = fluid.ParamAttr("fc1_param")
                fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
                param_attr2 = fluid.ParamAttr("fc2_param")
                fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
                loss = fluid.layers.reduce_mean(fc2)
                return loss


            # network 1: clip all parameter gradient
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 2: clip parameter gradient by name
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=["fc1_param", "fc2_param"])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

640
            # network 3: clip parameter gradient by value
641 642 643 644 645 646 647 648 649
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                param_var1 = fluid.default_main_program().global_block().var("fc1_param")
                param_var2 = fluid.default_main_program().global_block().var("fc2_param")
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=[param_var1, param_var2])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
650
            
651
            # network 4: use 'set_gradient_clip' and 'optimize(grad_clip=clip)' together
652 653 654 655 656 657 658
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
                clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                # Set the gradient clipping strategy: clip1
                fluid.clip.set_gradient_clip(clip1)
                # Set the gradient clipping strategy: clip2
659 660
                sgd = fluid.optimizer.SGD(learning_rate=1e-3, grad_clip=clip2)
                sgd.minimize(loss)
661 662 663 664
                # 'set_gradient_clip' will not take effect when setting has a conflict, 
                # and the gradient clipping strategy will be 'clip2'
            
            
F
fengjiayi 已提交
665
    """
666 667
    warnings.warn("Caution! 'set_gradient_clip' is not recommended "
                  "and may be deprecated in future! "
668 669
                  "We recommend a new strategy: set 'grad_clip' "
                  "when initializing the 'optimizer'. "
670
                  "This method can reduce the mistakes, please "
671
                  "refer to documention of 'optimizer'.")
672 673

    if not isinstance(clip, GradientClipBase):
F
fengjiayi 已提交
674
        raise TypeError(
675
            "'clip' should be an instance of GradientClipBase's derived class")
F
fengjiayi 已提交
676 677
    if program is None:
        program = framework.default_main_program()
678 679 680 681 682 683 684 685 686 687

    for op in program.block(0).ops:
        if 'op_namescope' in op.all_attrs() and "optimizer" in op.attr(
                "op_namescope"):
            warnings.warn(
                "'minimize' has been invoked before, this will make 'set_gradient_clip' "
                "be ineffective! Please invoke 'set_gradient_clip' before 'minimize'."
            )
            break

F
fengjiayi 已提交
688 689
    if param_list is None:
        param_list = program.block(0).all_parameters()
690
    if all(isinstance(elem, six.string_types) for elem in param_list):
F
fengjiayi 已提交
691 692 693 694 695 696 697
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
698
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
699 700


701
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
702
    context = dict()
703 704 705
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
706
        with p.block.program._optimized_guard(
707 708
            [p, g]), framework.name_scope('gradient_clip_@CLIP'):
            clip_attr = getattr(p, 'gradient_clip_attr', None)
Y
yuyang18 已提交
709
            if clip_attr is None:
710 711
                return param_grads
            if not isinstance(clip_attr, GradientClipBase):
Y
yuyang18 已提交
712
                raise TypeError(
713
                    "clip attribute should be an instance of GradientClipBase")
Y
Yu Yang 已提交
714

Y
yuyang18 已提交
715
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
716 717

    res = []
718
    param_new_grad_name_dict = dict()
719 720 721
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
722
        with p.block.program._optimized_guard(
723
            [p, g]), framework.name_scope('graident_clip_@CLIP'):
724
            param, new_grad = clip_attr._create_operators(param=p, grad=g)
725
            param_new_grad_name_dict[param.name] = new_grad.name
726
            res.append([param, new_grad])
Y
Yu Yang 已提交
727

728
    _correct_clip_op_role_var(res, param_new_grad_name_dict)
729 730 731 732
    return res


# change wrong mapping relation between param & grad in clip op
733 734
# Note: This function is sensitive to the time cost of the network with gradient clipping 
# and should not be changed easily. If you must change, please test the time cost.
735 736 737 738
def _correct_clip_op_role_var(params_grads, param_new_grad_name_dict):
    block_id_list = []
    if len(param_new_grad_name_dict) == 0:
        return
739 740
    for param, grad in params_grads:
        if grad is None:
741
            continue
742 743 744 745
        block_id = param.block.idx
        if block_id in block_id_list:
            continue
        block_id_list.append(block_id)
746 747
        for op in param.block.program.global_block().ops:
            if 'op_namescope' in op.all_attrs() and "gradient_clip" in op.attr(
748 749 750 751 752 753
                    "op_namescope") and op.attr('op_role_var'):
                param_name = op.attr('op_role_var')[0]
                if param_name in param_new_grad_name_dict:
                    correct_p_g = [
                        param_name, param_new_grad_name_dict[param_name]
                    ]
C
Chengmo 已提交
754
                    op._set_attr('op_role_var', correct_p_g)
Y
Yu Yang 已提交
755 756 757


ClipByValue = GradientClipByValue
F
fengjiayi 已提交
758 759
ClipByNorm = GradientClipByNorm
ClipByGlobalNorm = GradientClipByGlobalNorm