test.cc 49.9 KB
Newer Older
T
tensor-tang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
T
tensor-tang 已提交
14

15
#include <algorithm>
16
#include <iostream>
T
tensor-tang 已提交
17 18 19 20 21 22
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
26

27
DEFINE_double(acc, 1e-5, "Test accuracy threshold.");
28

T
tensor-tang 已提交
29
template <typename T>
30 31
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-2.f),
               const T upper = static_cast<T>(2.f)) {
T
tensor-tang 已提交
32 33 34 35 36 37 38 39 40
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
41
void ExpectEQ(const T* target, const T* refer, size_t n) {
T
tensor-tang 已提交
42
  if (std::is_floating_point<T>::value) {
43
    for (size_t i = 0; i < n; ++i) {
T
tensor-tang 已提交
44
      EXPECT_NEAR(target[i], refer[i], FLAGS_acc) << " at index : " << i;
T
tensor-tang 已提交
45 46
    }
  } else {
47
    for (size_t i = 0; i < n; ++i) {
T
tensor-tang 已提交
48
      EXPECT_EQ(target[i], refer[i]) << " at index : " << i;
T
tensor-tang 已提交
49 50 51 52
    }
  }
}

T
tensor-tang 已提交
53 54
std::vector<int> TestSizes() {
  std::vector<int> s;
T
tensor-tang 已提交
55
  for (int i = 1; i < 32; ++i) {
T
tensor-tang 已提交
56 57
    s.push_back(i);
  }
T
tensor-tang 已提交
58 59 60 61
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  s.push_back(2000);
T
tensor-tang 已提交
62 63 64
  return s;
}

T
tensor-tang 已提交
65
namespace jit = paddle::operators::jit;
66
using CPUPlace = paddle::platform::CPUPlace;
T
tensor-tang 已提交
67

68
template <typename KernelTuple, typename PlaceType, typename Tester,
69
          typename... Args>
70 71
void TestAllImpls(const typename KernelTuple::attr_type& attr,
                  const Tester& verifier, const Args&... args) {
72 73 74 75
  auto funcs = jit::GetAllCandidateFuncsWithTypes<KernelTuple, PlaceType>(attr);
  for (auto f : funcs) {
    VLOG(10) << "Test Kernel " << f.first;
    verifier(f.second, args...);
T
tensor-tang 已提交
76
  }
T
tensor-tang 已提交
77 78
}

79 80 81 82
template <typename KernelTuple, typename PlaceType>
void TestKernelXYZN() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
T
tensor-tang 已提交
83
  for (int d : TestSizes()) {
84
    auto ref = jit::GetReferFunc<KernelTuple>();
T
tensor-tang 已提交
85 86
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
87
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
88 89 90
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
91 92 93 94 95 96 97 98 99 100 101
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
102
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
103 104 105 106 107
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    auto verifier = [](const typename KernelTuple::func_type tgt,
                       const std::vector<T>& x, const std::vector<T>& y,
                       const std::vector<T>& zref) {
      EXPECT_TRUE(tgt != nullptr);
      EXPECT_EQ(zref.size(), x.size());
      EXPECT_EQ(zref.size(), y.size());
      const T* x_data = x.data();
      const T* y_data = y.data();
      const T* zref_data = zref.data();
      const int d = zref.size();

      std::vector<T> ztgt(d);
      T* ztgt_data = ztgt.data();
      // test normal
      tgt(x_data, y_data, ztgt_data, d);
      ExpectEQ<T>(ztgt_data, zref_data, d);
      // test inplace x
      std::copy(x.begin(), x.end(), ztgt.begin());
      tgt(ztgt_data, y_data, ztgt_data, d);
      ExpectEQ<T>(ztgt_data, zref_data, d);
      // test inplace y
      std::copy(y.begin(), y.end(), ztgt.begin());
      tgt(x_data, ztgt_data, ztgt_data, d);
      ExpectEQ<T>(ztgt_data, zref_data, d);
    };

    TestAllImpls<KernelTuple, PlaceType>(d, verifier, x, y, zref);
T
tensor-tang 已提交
135 136
  }
}
T
tensor-tang 已提交
137

138 139 140 141
template <typename KernelTuple, typename PlaceType>
void TestKernelAXYN() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
142
  for (int d : TestSizes()) {
143
    auto ref = jit::GetReferFunc<KernelTuple>();
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    EXPECT_TRUE(ref != nullptr);

    const T a = static_cast<T>(3);
    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
    RandomVec<T>(d, x.data());
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(&a, x_data, yref_data, d);
    ref(&a, xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    auto verifier = [](const typename KernelTuple::func_type tgt, const T a,
                       const std::vector<T>& x, const std::vector<T>& yref) {
      EXPECT_TRUE(tgt != nullptr);
      EXPECT_EQ(yref.size(), x.size());
      const T* x_data = x.data();
      const T* yref_data = yref.data();
      const int d = yref.size();
      std::vector<T> ytgt(d);
      T* ytgt_data = ytgt.data();
      // test normal
      tgt(&a, x_data, ytgt_data, d);
      ExpectEQ<T>(ytgt_data, yref_data, d);
      // test inplace x
      std::copy(x.begin(), x.end(), ytgt.begin());
      tgt(&a, ytgt_data, ytgt_data, d);
      ExpectEQ<T>(ytgt_data, yref_data, d);
    };
    TestAllImpls<KernelTuple, PlaceType>(d, verifier, a, x, yref);
178 179 180
  }
}

181 182 183 184
template <typename KernelTuple, typename PlaceType>
void TestKernelXYN() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
185
  for (int d : TestSizes()) {
186
    auto ref = jit::GetReferFunc<KernelTuple>();
187 188 189 190
    EXPECT_TRUE(ref != nullptr);

    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
191
    RandomVec<T>(d, x.data());
192 193 194 195 196 197 198 199 200
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(x_data, yref_data, d);
    ref(xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    auto verifier = [](const typename KernelTuple::func_type tgt,
                       const std::vector<T>& x, const std::vector<T>& yref) {
      EXPECT_TRUE(tgt != nullptr);
      EXPECT_EQ(yref.size(), x.size());
      const T* x_data = x.data();
      const T* yref_data = yref.data();
      const int d = yref.size();
      std::vector<T> ytgt(d);
      T* ytgt_data = ytgt.data();
      // test normal
      tgt(x_data, ytgt_data, d);
      ExpectEQ<T>(ytgt_data, yref_data, d);
      // test inplace x
      std::copy(x.begin(), x.end(), ytgt.begin());
      tgt(ytgt_data, ytgt_data, d);
      ExpectEQ<T>(ytgt_data, yref_data, d);
    };
    TestAllImpls<KernelTuple, PlaceType>(d, verifier, x, yref);
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelXRN() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  auto last_acc = FLAGS_acc;
  FLAGS_acc = 1e-4;
  for (int d : TestSizes()) {
229
    auto ref = jit::GetReferFunc<KernelTuple>();
230 231 232 233 234
    EXPECT_TRUE(ref != nullptr);
    std::vector<T> x(d);
    RandomVec<T>(d, x.data());
    T ref_res;
    ref(x.data(), &ref_res, d);
235

236 237 238 239 240 241 242 243
    auto verifier = [](const typename KernelTuple::func_type tgt,
                       const std::vector<T>& x, const T ref_res) {
      EXPECT_TRUE(tgt != nullptr);
      T tgt_res;
      tgt(x.data(), &tgt_res, x.size());
      ExpectEQ<T>(&tgt_res, &ref_res, 1);
    };
    TestAllImpls<KernelTuple, PlaceType>(d, verifier, x, ref_res);
244
  }
245
  FLAGS_acc = last_acc;
246 247
}

248 249 250 251
template <typename KernelTuple, typename PlaceType>
void TestKernelLSTM() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
T
tensor-tang 已提交
252
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
T
tensor-tang 已提交
253 254 255
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
  for (int d : test_sizes) {
T
tensor-tang 已提交
256 257 258 259 260 261 262
    for (bool use_peephole : {true, false}) {
      for (auto& act_gate : all_acts) {
        for (auto& act_cand : all_acts) {
          for (auto& act_cell : all_acts) {
            const jit::lstm_attr_t attr(
                d, jit::to_kerneltype(act_gate), jit::to_kerneltype(act_cand),
                jit::to_kerneltype(act_cell), use_peephole);
263
            auto ref = jit::GetReferFunc<KernelTuple>();
T
tensor-tang 已提交
264 265 266
            EXPECT_TRUE(ref != nullptr);
            std::vector<T> xsrc(4 * d), wp(3 * d), ct_1(d);
            std::vector<T> ct_ref(d), ht_ref(d), checked(2 * d);
267
            RandomVec<T>(4 * d, xsrc.data());
268 269
            RandomVec<T>(3 * d, wp.data(), -1.f, 1.f);
            RandomVec<T>(d, ct_1.data(), -1.f, 1.f);
T
tensor-tang 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
            // x could be changed after compute, so copy to save src
            std::vector<T> x(xsrc.size());
            std::copy(xsrc.begin(), xsrc.end(), x.begin());
            const T* ct_1_data = ct_1.data();
            const T* wp_data = wp.data();
            T* x_data = x.data();
            T* checked_data = checked.data();
            T* ct_ref_data = ct_ref.data();
            T* ht_ref_data = ht_ref.data();
            jit::lstm_t step;
            step.gates = x_data;
            step.ct_1 = ct_1_data;
            step.ct = ct_ref_data;
            step.ht = ht_ref_data;
            if (use_peephole) {
              step.wp = wp_data;
              step.checked = checked_data;
            }
            ref(&step, &attr);
T
tensor-tang 已提交
289
            VLOG(10) << attr;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

            auto verifier = [](
                const typename KernelTuple::func_type tgt,
                const std::vector<T>& xsrc, const std::vector<T>& wp,
                const std::vector<T>& ct_1, const std::vector<T>& ct_ref,
                const std::vector<T>& ht_ref,
                const typename KernelTuple::attr_type& attr) {
              EXPECT_TRUE(tgt != nullptr);
              EXPECT_EQ(ct_ref.size(), ht_ref.size());
              EXPECT_EQ(ct_1.size(), ht_ref.size());
              EXPECT_EQ(xsrc.size(), 4 * ht_ref.size());
              EXPECT_EQ(wp.size(), 3 * ht_ref.size());

              // x could be changed after compute, so copy to save src
              int d = ht_ref.size();
              std::vector<T> x(xsrc.size()), ct(ct_ref.size()),
                  ht(ht_ref.size());
              std::vector<T> checked(2 * d);
              std::copy(xsrc.begin(), xsrc.end(), x.begin());

              const T* ct_1_data = ct_1.data();
              const T* wp_data = wp.data();
              const T* ct_ref_data = ct_ref.data();
              const T* ht_ref_data = ht_ref.data();
              T* x_data = x.data();
              T* ct_data = ct.data();
              T* ht_data = ht.data();
              T* checked_data = checked.data();

              jit::lstm_t step;
              step.gates = x_data;
              step.ct_1 = ct_1_data;
              step.ct = ct_data;
              step.ht = ht_data;
              if (attr.use_peephole) {
                step.wp = wp_data;
                step.checked = checked_data;
              }

              tgt(&step, &attr);
              ExpectEQ<T>(ct_data, ct_ref_data, d);
              ExpectEQ<T>(ht_data, ht_ref_data, d);
            };
            TestAllImpls<KernelTuple, PlaceType>(attr, verifier, xsrc, wp, ct_1,
                                                 ct_ref, ht_ref, attr);
T
tensor-tang 已提交
335 336 337 338 339 340 341
          }
        }
      }
    }
  }
}

342 343 344 345
template <typename KernelTuple, typename PlaceType>
void TestKernelGRU() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
346
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
T
tensor-tang 已提交
347 348 349
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
  for (int d : test_sizes) {
350 351 352 353
    for (auto& act_gate : all_acts) {
      for (auto& act_cand : all_acts) {
        const jit::gru_attr_t attr(d, jit::to_kerneltype(act_gate),
                                   jit::to_kerneltype(act_cand));
354
        auto ref = jit::GetReferFunc<KernelTuple>();
355 356
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> xsrc(3 * d), ht_1(d), ht_ref(d);
357 358
        RandomVec<T>(3 * d, xsrc.data());
        RandomVec<T>(d, ht_1.data());
359 360 361 362 363 364 365 366 367 368 369
        // x could be changed after compute, so copy to save src
        std::vector<T> x(xsrc.size());
        std::copy(xsrc.begin(), xsrc.end(), x.begin());
        const T* ht_1_data = ht_1.data();
        T* x_data = x.data();
        T* ht_ref_data = ht_ref.data();
        jit::gru_t step;
        step.gates = x_data;
        step.ht_1 = ht_1_data;
        step.ht = ht_ref_data;
        ref(&step, &attr);
T
tensor-tang 已提交
370
        VLOG(10) << attr;
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        auto verifier = [](const typename KernelTuple::func_type tgt,
                           const std::vector<T>& xsrc,
                           const std::vector<T>& ht_1,
                           const std::vector<T>& ht_ref,
                           const typename KernelTuple::attr_type& attr) {
          EXPECT_TRUE(tgt != nullptr);
          EXPECT_EQ(ht_1.size(), ht_ref.size());
          EXPECT_EQ(xsrc.size(), 3 * ht_ref.size());

          // x could be changed after compute, so copy to save src
          int d = ht_ref.size();
          std::vector<T> x(xsrc.size()), ht(ht_ref.size());
          std::copy(xsrc.begin(), xsrc.end(), x.begin());
          const T* ht_1_data = ht_1.data();
          const T* ht_ref_data = ht_ref.data();
          T* x_data = x.data();
          T* ht_data = ht.data();
          jit::gru_t step;
          step.gates = x_data;
          step.ht_1 = ht_1_data;
          step.ht = ht_data;
          tgt(&step, &attr);
          ExpectEQ<T>(ht_data, ht_ref_data, d);
        };
        TestAllImpls<KernelTuple, PlaceType>(attr, verifier, xsrc, ht_1, ht_ref,
                                             attr);
397 398 399 400 401
      }
    }
  }
}

402 403 404 405 406
template <typename KernelTuple, typename PlaceType>
void TestKernelNCHW16CMulNC() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  const int n = 3, c = 16 * 4, h = 10, w = 10;
407
  auto ref = jit::GetReferFunc<KernelTuple>();
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  EXPECT_TRUE(ref != nullptr);
  int sz = n * c * h * w;
  std::vector<T> x(sz), y(n * c), zref(sz);
  std::vector<T> ztgt(sz), zjit(sz);
  RandomVec<T>(sz, x.data());
  RandomVec<T>(n * c, y.data());

  const T* x_data = x.data();
  const T* y_data = y.data();
  T* zref_data = zref.data();
  T* ztgt_data = ztgt.data();
  T* zjit_data = zjit.data();
  constexpr int simd_width = ZMM_FLOAT_BLOCK;
  int C = c / simd_width;
  auto tgt = jit::KernelFuncs<KernelTuple, PlaceType>::Cache().At(0);
423 424 425
  auto funcs = jit::GetAllCandidateFuncs<KernelTuple, PlaceType>(0);
  EXPECT_GT(funcs.size(), 0UL);
  auto jitcode = funcs[0];
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  EXPECT_TRUE(tgt != nullptr);

  if (std::is_same<T, float>::value &&
      paddle::platform::MayIUse(paddle::platform::avx512f)) {
    EXPECT_TRUE(jitcode != nullptr);
  }
  for (int ni = 0; ni < n; ni++) {
    for (int ci = 0; ci < C; ci++) {
      auto ptr_x =
          x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
      auto ptr_zref =
          zref_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_ztgt =
          ztgt_data + ni * C * h * w * simd_width + ci * h * w * simd_width;

      ref(ptr_x, ptr_y, ptr_zref, h, w);
      tgt(ptr_x, ptr_y, ptr_ztgt, h, w);

      if (jitcode) {
        auto ptr_zjit =
            zjit_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
        jitcode(ptr_x, ptr_y, ptr_zjit, h, w);
      }
    }
  }
  ExpectEQ<T>(ztgt_data, zref_data, sz);
  if (jitcode) {
    ExpectEQ<T>(zjit_data, zref_data, sz);
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelLayerNorm() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  const T epsilon = 9.99999975e-06;
  for (int n : {1, 2, 10}) {
    for (int x_dim_0 : {1, 9, 17, 50}) {
      int left = n * x_dim_0;
      for (int x_dim_1 : TestSizes()) {
        int right = x_dim_1;
468
        auto ref = jit::GetReferFunc<KernelTuple>();
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        EXPECT_TRUE(ref != nullptr);
        int sz = left * right;
        std::vector<T> x(sz), mean(left), var(left), scale(right), bias(right),
            outref(sz);
        RandomVec<T>(sz, x.data());
        RandomVec<T>(left, mean.data());
        RandomVec<T>(left, var.data());
        RandomVec<T>(right, scale.data());
        RandomVec<T>(right, bias.data());

        const T* scale_data = scale.data();
        const T* bias_data = bias.data();
        T* x_data = x.data();
        T* mean_data = mean.data();
        T* var_data = var.data();
        T* outref_data = outref.data();

        ref(x_data, outref_data, mean_data, var_data, scale_data, bias_data,
            left, epsilon, right);

        auto verifier = [](
            const typename KernelTuple::func_type tgt, const std::vector<T>& x_,
            const std::vector<T>& outref_, const std::vector<T>& mean_,
            const std::vector<T>& var_, const std::vector<T>& scale,
            const std::vector<T>& bias, const int& left, const float& epsilon,
            const typename KernelTuple::attr_type& right) {
          EXPECT_TRUE(tgt != nullptr);
          std::vector<T> outtgt(outref_.size());
          std::vector<T> x(x_.size());
          std::vector<T> mean(mean_.size());
          std::vector<T> var(var_.size());
          std::vector<T> outref(outref_.size());
          std::copy(x_.begin(), x_.end(), x.begin());
          std::copy(mean_.begin(), mean_.end(), mean.begin());
          std::copy(var_.begin(), var_.end(), var.begin());
          std::copy(outref_.begin(), outref_.end(), outref.begin());

          EXPECT_EQ(x.size(), static_cast<size_t>(left * right));
          EXPECT_EQ(outref.size(), static_cast<size_t>(left * right));
          EXPECT_EQ(mean.size(), static_cast<size_t>(left));
          EXPECT_EQ(var.size(), static_cast<size_t>(left));
          EXPECT_EQ(scale.size(), static_cast<size_t>(right));
          EXPECT_EQ(bias.size(), static_cast<size_t>(right));

          const T* scale_data = scale.data();
          const T* bias_data = bias.data();
          T* x_data = x.data();
          T* mean_data = mean.data();
          T* var_data = var.data();
          T* outref_data = outref.data();
          T* outtgt_data = outtgt.data();
          tgt(x_data, outtgt_data, mean_data, var_data, scale_data, bias_data,
              left, epsilon, right);
          ExpectEQ<T>(outtgt_data, outref_data, left * right);
        };
        TestAllImpls<KernelTuple, PlaceType>(right, verifier, x, outref, mean,
                                             var, scale, bias, left, epsilon,
                                             right);
      }
    }
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelCRFDecoding() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  constexpr int state_trans_base_idx = 2;
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 2000));
  for (int seq_len : {1, 11, 17, 50}) {
    for (int tag_num : test_sizes) {
541
      auto ref = jit::GetReferFunc<KernelTuple>();
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
      EXPECT_TRUE(ref != nullptr);
      int x_sz = seq_len * tag_num;
      int w_sz = (tag_num + state_trans_base_idx) * tag_num;
      std::vector<T> x(x_sz), w(w_sz), alpharef(x_sz);
      std::vector<int> trackref(x_sz);
      RandomVec<T>(x_sz, x.data());
      RandomVec<T>(w_sz, w.data());

      ref(seq_len, (const T*)x.data(), (const T*)w.data(), alpharef.data(),
          trackref.data(), tag_num);

      auto verifier = [](
          const typename KernelTuple::func_type tgt, const int& seq_len,
          const std::vector<T>& x, const std::vector<T>& w,
          const std::vector<T>& alpharef, const std::vector<int>& trackref,
          const typename KernelTuple::attr_type& tag_num) {
        constexpr int state_trans_base_idx = 2;
        EXPECT_TRUE(tgt != nullptr);
        EXPECT_EQ(x.size(), static_cast<size_t>(seq_len * tag_num));
        EXPECT_EQ(w.size(), static_cast<size_t>(
                                (tag_num + state_trans_base_idx) * tag_num));
        EXPECT_EQ(alpharef.size(), static_cast<size_t>(seq_len * tag_num));
        EXPECT_EQ(trackref.size(), static_cast<size_t>(seq_len * tag_num));
        std::vector<T> alphatgt(alpharef.size());
        std::vector<int> tracktgt(trackref.size());
        memcpy(tracktgt.data(), trackref.data(), tag_num * sizeof(int));
        tgt(seq_len, (const T*)x.data(), (const T*)w.data(), alphatgt.data(),
            tracktgt.data(), tag_num);
        ExpectEQ<T>(alpharef.data(), alphatgt.data(), seq_len * tag_num);
        ExpectEQ<int>(trackref.data(), tracktgt.data(), seq_len * tag_num);
      };
      TestAllImpls<KernelTuple, PlaceType>(tag_num, verifier, seq_len, x, w,
                                           alpharef, trackref, tag_num);
    }
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelSeqPool() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
583 584
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
T
tensor-tang 已提交
585 586
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
587
  for (auto type : pool_types) {
T
tensor-tang 已提交
588
    for (int w : test_sizes) {
T
tensor-tang 已提交
589
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
590
      for (int h : test_sizes) {
T
tensor-tang 已提交
591
        attr.h = h;
592
        auto ref = jit::GetReferFunc<KernelTuple>();
593 594
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> x(h * w), yref(w);
595
        RandomVec<T>(h * w, x.data());
596 597 598 599
        const T* x_data = x.data();
        T* yref_data = yref.data();
        ref(x_data, yref_data, &attr);
        VLOG(10) << attr;
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        auto verifier = [](const typename KernelTuple::func_type tgt,
                           const std::vector<T>& x, const std::vector<T>& yref,
                           const typename KernelTuple::attr_type& attr) {
          EXPECT_TRUE(tgt != nullptr);
          EXPECT_EQ(x.size() % yref.size(), static_cast<size_t>(0));
          int w = yref.size();
          std::vector<T> y(w);
          const T* x_data = x.data();
          const T* yref_data = yref.data();
          T* y_data = y.data();
          tgt(x_data, y_data, &attr);
          ExpectEQ<T>(y_data, yref_data, w);
        };
        TestAllImpls<KernelTuple, PlaceType>(attr, verifier, x, yref, attr);
      }
    }
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelEmbSeqPool() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  int64_t tbl_h = 1e4;
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum};  // only support sum yet
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
  for (int tbl_w : test_sizes) {
    std::vector<T> table(tbl_h * tbl_w);
    RandomVec<T>(tbl_h * tbl_w, table.data());
    const T* table_data = table.data();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
        for (int idx_h : {1, 2, 9, 13, 16}) {
635
          auto ref = jit::GetReferFunc<KernelTuple>();
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
          EXPECT_TRUE(ref != nullptr);
          std::vector<int64_t> idx(idx_h * idx_w);
          RandomVec<int64_t>(idx_h * idx_w, idx.data(), 0, tbl_h - 1);
          int64_t out_w = tbl_w * idx_w;
          std::vector<T> oref(out_w);
          const int64_t* idx_data = idx.data();
          T* o_data = oref.data();
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          ref(table_data, idx_data, o_data, &attr);

          auto verifier = [](const typename KernelTuple::func_type tgt,
                             const std::vector<T>& table,
                             const std::vector<int64_t>& idx,
                             const std::vector<T>& oref,
                             const typename KernelTuple::attr_type& attr) {
            EXPECT_TRUE(tgt != nullptr);
            EXPECT_EQ(table.size(), static_cast<size_t>(attr.table_height *
                                                        attr.table_width));
            EXPECT_EQ(idx.size(), static_cast<size_t>(attr.index_height *
                                                      attr.index_width));
            EXPECT_EQ(oref.size(),
                      static_cast<size_t>(attr.table_width * attr.index_width));
            const T* table_data = table.data();
            const int64_t* idx_data = idx.data();
            const T* oref_data = oref.data();
            int o_w = oref.size();
            std::vector<T> out(o_w);
            T* o_data = out.data();
            tgt(table_data, idx_data, o_data, &attr);
            ExpectEQ<T>(o_data, oref_data, o_w);
          };
          TestAllImpls<KernelTuple, PlaceType>(attr, verifier, table, idx, oref,
                                               attr);
        }
671 672 673 674 675
      }
    }
  }
}

676 677 678 679
template <typename KernelTuple, typename PlaceType>
void TestKernelMatMul() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
680
  auto last_acc = FLAGS_acc;
T
tensor-tang 已提交
681 682
  // export MKL_CBWR=AVX would make MKL force to use AVX
  // export KMP_DETERMINISTIC_REDUCTION=yes would make the result deterministic
683
  FLAGS_acc = 1e-3;
T
tensor-tang 已提交
684 685 686
  for (int m : {1, 2, 3, 4}) {
    for (int n : {1, 2, 3, 4}) {
      for (int k : TestSizes()) {
687
        auto ref = jit::GetReferFunc<KernelTuple>();
T
tensor-tang 已提交
688 689
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> a(m * k), b(k * n), c(m * n);
690 691
        RandomVec<T>(m * k, a.data());
        RandomVec<T>(k * n, b.data());
T
tensor-tang 已提交
692 693 694
        const T* a_data = a.data();
        const T* b_data = b.data();
        T* c_data = c.data();
695 696
        const jit::matmul_attr_t attr{m, n, k};
        ref(a_data, b_data, c_data, &attr);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
        auto verifier = [](const typename KernelTuple::func_type tgt,
                           const std::vector<T>& a, const std::vector<T>& b,
                           const std::vector<T>& cref,
                           const typename KernelTuple::attr_type& attr) {
          EXPECT_TRUE(tgt != nullptr);
          EXPECT_EQ(a.size(), static_cast<size_t>(attr.m * attr.k));
          EXPECT_EQ(b.size(), static_cast<size_t>(attr.k * attr.n));
          EXPECT_EQ(cref.size(), static_cast<size_t>(attr.m * attr.n));
          std::vector<T> c(cref.size());
          const T* a_data = a.data();
          const T* b_data = b.data();
          const T* cref_data = cref.data();
          T* c_data = c.data();
          tgt(a_data, b_data, c_data, &attr);
          ExpectEQ<T>(c_data, cref_data, attr.m * attr.n);
        };
        TestAllImpls<KernelTuple, PlaceType>(attr, verifier, a, b, c, attr);
T
tensor-tang 已提交
714 715 716
      }
    }
  }
717
  FLAGS_acc = last_acc;
T
tensor-tang 已提交
718 719
}

720 721 722 723
template <typename KernelTuple, typename PlaceType>
void TestKernelSoftmax() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
724 725
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
D
dengkaipeng 已提交
726
      for (int m : {1, 2, 3}) { // remain
727 728 729 730 731 732 733
        if (m > n || n % m != 0) {
          continue;
        }
        auto ref = jit::GetReferFunc<KernelTuple>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> x(bs * n), y(bs * n);
        RandomVec<T>(bs * n, x.data());
734
        const T* x_data = x.data();
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        T* y_data = y.data();

        std::vector<T> xinp(x.size());  // inplace test
        std::copy(x.begin(), x.end(), xinp.begin());
        ref(x_data, y_data, n, bs, m);
        T* xinp_data = xinp.data();
        ref(xinp_data, xinp_data, n, bs, m);
        ExpectEQ<T>(xinp_data, y_data, n * bs);

        auto verifier = [](const typename KernelTuple::func_type tgt,
                           const std::vector<T>& x, const std::vector<T>& yref,
                           int n, int bs, int m) {
          EXPECT_TRUE(tgt != nullptr);
          EXPECT_EQ(yref.size(), x.size());
          EXPECT_EQ(x.size(), static_cast<size_t>(n * bs));
          const T* x_data = x.data();
          const T* yref_data = yref.data();
          std::vector<T> ytgt(n * bs);
          T* ytgt_data = ytgt.data();
          // test normal
          tgt(x_data, ytgt_data, n, bs, m);
          ExpectEQ<T>(ytgt_data, yref_data, n * bs);
          // test inplace x
          std::copy(x.begin(), x.end(), ytgt.begin());
          tgt(ytgt_data, ytgt_data, n, bs, m);
          ExpectEQ<T>(ytgt_data, yref_data, n * bs);
        };
        TestAllImpls<KernelTuple, PlaceType>(n, verifier, x, y, n, bs, m);
      }
764 765 766 767
    }
  }
}

D
dengkaipeng 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
template <typename KernelTuple, typename PlaceType>
void TestKernelStrideASum() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  for (int d : TestSizes()) {
    for (int m : {1, 2, 3}) { // stride
      if (m > d || d % m != 0) {
        continue;
      }
      auto ref = jit::GetReferFunc<KernelTuple>();
      EXPECT_TRUE(ref != nullptr);
      std::vector<T> x(d);
      RandomVec<T>(d, x.data());
      T ref_res;
      ref(x.data(), &ref_res, d, m);

      auto verifier = [](const typename KernelTuple::func_type tgt,
                         const std::vector<T>& x, const T ref_res, 
                         const int m) {
        EXPECT_TRUE(tgt != nullptr);
        T tgt_res;
        tgt(x.data(), &tgt_res, x.size(), m);
        ExpectEQ<T>(&tgt_res, &ref_res, 1);
      };
      TestAllImpls<KernelTuple, PlaceType>(d, verifier, x, ref_res, m);
    }
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelStrideScal() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  // for (int d : TestSizes()) {
  //   for (int m : {1, 2, 3}) { // stride
  for (int d : {4}) {
    for (int m : {2}) { // stride
      if (m > d || d % m != 0) {
        continue;
      }
      auto ref = jit::GetReferFunc<KernelTuple>();
      EXPECT_TRUE(ref != nullptr);

      const T a = static_cast<T>(3);
      std::vector<T> x(d), yref(d);
      std::vector<T> xinp(d);  // inplace test
      RandomVec<T>(d, x.data());
      std::copy(x.begin(), x.end(), xinp.begin());

      const T* x_data = x.data();
      T* yref_data = yref.data();
      T* xinp_data = xinp.data();
      // test refer code inplace
      ref(&a, x_data, yref_data, d, m);
      ref(&a, xinp_data, xinp_data, d, m);
      ExpectEQ<T>(xinp_data, yref_data, d);

      auto verifier = [](const typename KernelTuple::func_type tgt, const T a,
                         const std::vector<T>& x, const std::vector<T>& yref,
                         const int m) {
        EXPECT_TRUE(tgt != nullptr);
        EXPECT_EQ(yref.size(), x.size());
        const T* x_data = x.data();
        const T* yref_data = yref.data();
        const int d = yref.size();
        std::vector<T> ytgt(d);
        T* ytgt_data = ytgt.data();
        // test normal
        tgt(&a, x_data, ytgt_data, d, m);
        ExpectEQ<T>(ytgt_data, yref_data, d);
        // test inplace x
        std::copy(x.begin(), x.end(), ytgt.begin());
        tgt(&a, ytgt_data, ytgt_data, d, m);
        ExpectEQ<T>(ytgt_data, yref_data, d);
      };
      TestAllImpls<KernelTuple, PlaceType>(d, verifier, a, x, yref, m);
    }
  }
}

848 849 850 851
template <typename KernelTuple, typename PlaceType>
void TestKernelSgd() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
  const T lr = 0.1;
  auto UnDuplicatedRandomVec = [](int n, const int64_t lower,
                                  const int64_t upper) -> std::vector<int64_t> {
    PADDLE_ENFORCE_LE(static_cast<size_t>(upper - lower), n - 1);
    PADDLE_ENFORCE_GT(n, 0);
    std::vector<int64_t> all, out;
    for (int i = 0; i < n; ++i) {
      all.push_back(i);
    }
    std::random_shuffle(all.begin(), all.end());
    out.insert(out.begin(), all.begin(), all.begin() + n);
    return out;
  };
  for (int param_h : {1, 10}) {
    for (int grad_w : TestSizes()) {
      std::vector<T> param(param_h * grad_w);
      std::vector<T> param_out(param_h * grad_w);
869
      RandomVec<T>(param_h * grad_w, param.data());
870 871 872 873 874 875
      const T* param_data = param.data();
      T* out_data = param_out.data();
      for (int rows_size = 1; rows_size <= param_h; ++rows_size) {
        std::vector<T> grad(rows_size * grad_w);
        std::vector<int64_t> rows =
            UnDuplicatedRandomVec(rows_size, 0, rows_size - 1);
876
        RandomVec<T>(rows_size * grad_w, grad.data());
877 878
        const int64_t* rows_data = rows.data();
        const T* grad_data = grad.data();
879
        auto ref = jit::GetReferFunc<KernelTuple>();
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
        EXPECT_TRUE(ref != nullptr);
        jit::sgd_attr_t attr(param_h, grad_w, rows_size, grad_w, rows_size);
        ref(&lr, param_data, grad_data, rows_data, out_data, &attr);

        // inplace test
        std::vector<T> inp(param.size());
        std::copy(param.begin(), param.end(), inp.begin());
        T* inp_data = inp.data();
        ref(&lr, inp_data, grad_data, rows_data, inp_data, &attr);
        // only the selected rows should be equal
        for (int i = 0; i < rows_size; ++i) {
          ExpectEQ<T>(inp_data + rows[i] * grad_w, out_data + rows[i] * grad_w,
                      grad_w);
        }

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
        auto verifier = [](
            const typename KernelTuple::func_type tgt, const T lr,
            const std::vector<T>& param, const std::vector<T>& grad,
            const std::vector<int64_t>& rows, const std::vector<T>& oref,
            const typename KernelTuple::attr_type& attr) {
          EXPECT_TRUE(tgt != nullptr);
          EXPECT_EQ(param.size(),
                    static_cast<size_t>(attr.param_height * attr.param_width));
          EXPECT_EQ(grad.size(),
                    static_cast<size_t>(attr.grad_height * attr.grad_width));
          EXPECT_EQ(rows.size(), static_cast<size_t>(attr.selected_rows_size));
          EXPECT_EQ(param.size(), oref.size());
          const T* param_data = param.data();
          const T* grad_data = grad.data();
          const int64_t* rows_data = rows.data();
          const T* oref_data = oref.data();

          std::vector<T> out(oref.size());
          T* o_data = out.data();
          tgt(&lr, param_data, grad_data, rows_data, o_data, &attr);
          // only the selected rows should be equal
          for (size_t i = 0; i < rows.size(); ++i) {
            ExpectEQ<T>(o_data + rows[i] * attr.grad_width,
                        oref_data + rows[i] * attr.grad_width, attr.grad_width);
          }
920

921 922 923 924 925 926 927 928 929 930
          // inplace
          std::copy(param.begin(), param.end(), out.begin());
          tgt(&lr, o_data, grad_data, rows_data, o_data, &attr);
          for (size_t i = 0; i < rows.size(); ++i) {
            ExpectEQ<T>(o_data + rows[i] * attr.grad_width,
                        oref_data + rows[i] * attr.grad_width, attr.grad_width);
          }
        };
        TestAllImpls<KernelTuple, PlaceType>(attr, verifier, lr, param, grad,
                                             rows, param_out, attr);
931 932 933 934 935
      }
    }
  }
}

936 937 938 939
template <typename KernelTuple, typename PlaceType>
void TestKernelVBroadcast() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
940 941 942 943 944
  for (int w : TestSizes()) {
    std::vector<T> x(w);
    RandomVec<T>(w, x.data());
    const T* x_data = x.data();
    for (int64_t h : {1, 2, 6}) {
945
      auto ref = jit::GetReferFunc<KernelTuple>();
946 947 948 949 950
      EXPECT_TRUE(ref != nullptr);
      std::vector<T> y(w * h);
      T* y_data = y.data();
      ref(x_data, y_data, h, w);

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
      auto verifier = [](const typename KernelTuple::func_type tgt,
                         const std::vector<T>& x, const std::vector<T>& yref,
                         const int64_t& h,
                         const typename KernelTuple::attr_type& attr) {
        EXPECT_TRUE(tgt != nullptr);
        EXPECT_EQ(x.size(), static_cast<size_t>(attr));
        EXPECT_EQ(yref.size(), x.size() * h);
        std::vector<T> y(yref.size());
        const T* x_data = x.data();
        const T* yref_data = yref.data();
        T* y_data = y.data();
        tgt(x_data, y_data, h, attr);
        ExpectEQ<T>(y_data, yref_data, yref.size());
      };
      TestAllImpls<KernelTuple, PlaceType>(static_cast<int64_t>(w), verifier, x,
                                           y, h, static_cast<int64_t>(w));
967 968 969 970
    }
  }
}

971 972 973
// test pool
TEST(JITKernel_pool, jitcreator) {
  const auto& jitcreators = jit::JitCodeCreatorPool::Instance().AllCreators();
974 975 976
#if defined(_WIN32) || defined(__APPLE__) || defined(__OSX__)
  EXPECT_EQ(jitcreators.size(), 0UL);
#else
977
  EXPECT_EQ(jitcreators.size(), 25UL);
978
#endif
979 980 981 982 983 984 985
}

TEST(JITKernel_pool, jitpool) {
  // jitpool is related with attr
  const auto& kers = jit::JitCodePool<jit::kVAdd>().Instance().AllKernels();
  EXPECT_EQ(kers.size(), 0UL);
  jit::GetAllCandidateKernels<jit::VAddTuple<float>, CPUPlace>(3);
986 987 988 989
// after call GetAllCandidateKernels, it will create jitcode Automatically
#if defined(_WIN32) || defined(__APPLE__) || defined(__OSX__)
  EXPECT_EQ(kers.size(), 0UL);
#else
990
  EXPECT_EQ(kers.size(), 1UL);
991
#endif
992 993 994 995
}

TEST(JITKernel_pool, more) {
  const auto& kers = jit::KernelPool::Instance().AllKernels();
996 997 998 999
#if defined(__APPLE__) || defined(__OSX__)
  EXPECT_EQ(kers.size(), 10UL);
#else
#ifdef PADDLE_WITH_MKLML
D
dengkaipeng 已提交
1000
  EXPECT_EQ(kers.size(), 22UL);
1001 1002 1003 1004
#else
  EXPECT_EQ(kers.size(), 8UL);
#endif
#endif
1005 1006 1007 1008
}

TEST(JITKernel_pool, refer) {
  const auto& kers = jit::ReferKernelPool::Instance().AllKernels();
D
dengkaipeng 已提交
1009
  EXPECT_EQ(kers.size(), 31UL);
1010 1011 1012 1013 1014 1015 1016 1017 1018
}

// test helper
TEST(JITKernel_helper, GetAllCandidateKernels) {
  auto fp_kers =
      jit::GetAllCandidateKernels<jit::VExpTuple<float>, CPUPlace>(10);
#if defined(_WIN32) || defined(__APPLE__) || defined(__OSX__)
  EXPECT_GE(fp_kers.size(), 1UL);  // refer
#else
1019
#ifdef PADDLE_WITH_MKLML
1020
  EXPECT_GE(fp_kers.size(), 3UL);  // jitcode, mkl, refer
1021 1022 1023
#else
  EXPECT_GE(fp_kers.size(), 2UL);  // jitcode, refer
#endif
1024 1025 1026 1027 1028 1029 1030
#endif

  auto db_kers =
      jit::GetAllCandidateKernels<jit::VExpTuple<double>, CPUPlace>(10);
#if defined(_WIN32) || defined(__APPLE__) || defined(__OSX__)
  EXPECT_GE(db_kers.size(), 1UL);  // refer
#else
1031
#ifdef PADDLE_WITH_MKLML
1032
  EXPECT_GE(db_kers.size(), 2UL);  // mkl, refer
1033 1034 1035
#else
  EXPECT_GE(db_kers.size(), 1UL);  // refer
#endif
1036 1037 1038 1039 1040 1041
#endif
}

TEST(JITKernel_helper, GetAllCandidateFuncsWithTypes) {
  auto fp_kers =
      jit::GetAllCandidateFuncsWithTypes<jit::VExpTuple<float>, CPUPlace>(10);
1042 1043 1044 1045 1046 1047
#if defined(__APPLE__) || defined(__OSX__)
  EXPECT_GE(fp_kers.size(), 1UL);  // refer
#else
#if !defined(PADDLE_WITH_MKLML) || defined(_WIN32)
  EXPECT_GE(fp_kers.size(), 2UL);  // jitcode/mkl, refer
#else
1048
  EXPECT_GE(fp_kers.size(), 3UL);  // jitcode, mkl, refer
1049 1050
#endif
#endif
1051 1052 1053

  auto db_kers =
      jit::GetAllCandidateFuncsWithTypes<jit::VExpTuple<double>, CPUPlace>(10);
1054 1055 1056
#if defined(__APPLE__) || defined(__OSX__) || !defined(PADDLE_WITH_MKLML)
  EXPECT_GE(db_kers.size(), 1UL);  // refer
#else
1057
  EXPECT_GE(db_kers.size(), 2UL);  // mkl, refer
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
#endif
}

TEST(JITKernel_helper, KernelFuncs) {
  auto f1 = jit::KernelFuncs<jit::VAddTuple<float>, CPUPlace>::Cache().At(3);
  auto f2 = jit::KernelFuncs<jit::VAddTuple<float>, CPUPlace>::Cache()[3];
  EXPECT_TRUE(f1 != nullptr);
  EXPECT_TRUE(f1 == f2);

  auto f3 = jit::KernelFuncs<jit::VAddTuple<float>, CPUPlace>::Cache()[5];
#if defined(_WIN32) || defined(__APPLE__) || defined(__OSX__)
  EXPECT_TRUE(f2 == f3);
#else
  EXPECT_TRUE(f2 != f3);
#endif
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
}

TEST(JITKernel_helper, GetAllCandidateFuncs) {
  auto funcs = jit::GetAllCandidateFuncs<jit::VExpTuple<float>, CPUPlace>(10);
  auto kers = jit::GetAllCandidateKernels<jit::VExpTuple<float>, CPUPlace>(10);
  EXPECT_EQ(funcs.size(), kers.size());

  std::vector<float> x(10), tgt(10);
  RandomVec<float>(10, x.data());
  auto best = jit::GetDefaultBestFunc<jit::VExpTuple<float>, CPUPlace>(10);
  best(x.data(), tgt.data(), 10);
  for (auto f : funcs) {
    std::vector<float> y(10);
    f(x.data(), y.data(), 10);
    ExpectEQ<float>(y.data(), tgt.data(), 10);
  }
}

T
tensor-tang 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
TEST(JITKernel_helper, pack_weights) {
  const int N = 8 * 60, K = 2;
  float src[K][N], yref[K][N], y[K * N];
  float* x = &(src[0][0]);
  float* ref = &(yref[0][0]);
  for (int i = 0; i < N * K; ++i) {
    *(x + i) = static_cast<float>(i);
  }
  int block = 0;
  std::vector<int> groups;
  if (paddle::platform::MayIUse(paddle::platform::avx512f)) {
    block = ZMM_FLOAT_BLOCK;
    groups.push_back(30);
  } else {
    block = YMM_FLOAT_BLOCK;
    groups.insert(groups.end(), {14, 14, 14, 14, 4});
  }

  int offset = 0;
  int acc = 0;
  for (int g : groups) {
    g = g * block;
    for (int k = 0; k < K; ++k) {
      for (int i = 0; i < g; ++i) {
        *(ref + offset) = src[k][i + acc];
        offset++;
      }
    }
    acc += g;
  }

  jit::pack_weights<float>(x, y, N, K);
  ExpectEQ<float>(y, ref, N * K);
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
TEST(JITKernel_helper, attr) {
  std::ostringstream out;
  // KernelTypes
  out << jit::to_string(jit::kNone) << jit::to_string(jit::kCRFDecoding)
      << jit::to_string(jit::kEmbSeqPool) << jit::to_string(jit::kGRUH1)
      << jit::to_string(jit::kGRUHtPart1) << jit::to_string(jit::kGRUHtPart2)
      << jit::to_string(jit::kHSum) << jit::to_string(jit::kHMax)
      << jit::to_string(jit::kLSTMCtHt) << jit::to_string(jit::kLSTMC1H1)
      << jit::to_string(jit::kLayerNorm) << jit::to_string(jit::kMatMul)
      << jit::to_string(jit::kNCHW16CMulNC) << jit::to_string(jit::kSeqPool)
      << jit::to_string(jit::kSoftmax) << jit::to_string(jit::kVAdd)
      << jit::to_string(jit::kVAddBias) << jit::to_string(jit::kVAddRelu)
      << jit::to_string(jit::kVBroadcast) << jit::to_string(jit::kVCopy)
      << jit::to_string(jit::kVExp) << jit::to_string(jit::kVIdentity)
      << jit::to_string(jit::kVMul) << jit::to_string(jit::kVRelu)
      << jit::to_string(jit::kVScal) << jit::to_string(jit::kSgd)
      << jit::to_string(jit::kVSigmoid) << jit::to_string(jit::kVSquare)
      << jit::to_string(jit::kVSub) << jit::to_string(jit::kVTanh);
  EXPECT_EQ(out.str().size(), 234);

  // SeqPoolTypes
  out.str("");
  out << jit::to_string(jit::kSum) << jit::to_string(jit::kAvg)
      << jit::to_string(jit::kSqrt);
  EXPECT_EQ(out.str().size(), 13);

  EXPECT_EQ(jit::to_kerneltype("relu"), jit::kVRelu);
  EXPECT_EQ(jit::to_kerneltype("Identity"), jit::kVIdentity);
  EXPECT_EQ(jit::to_kerneltype("VEXP"), jit::kVExp);
  EXPECT_EQ(jit::to_kerneltype("SigmoiD"), jit::kVSigmoid);
  EXPECT_EQ(jit::to_kerneltype("VTanh"), jit::kVTanh);

  out.str("");
  out << jit::lstm_attr_t(8, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  EXPECT_EQ(out.str().size(), 89);

  out.str("");
  out << jit::gru_attr_t(8, jit::kVIdentity, jit::kVSigmoid);
  EXPECT_EQ(out.str().size(), 52);

  out.str("");
  out << jit::seq_pool_attr_t(8, jit::SeqPoolType::kSum);
  EXPECT_EQ(out.str().size(), 44);

  out.str("");
  out << jit::emb_seq_pool_attr_t(1, 2, 3, 4, 5, jit::SeqPoolType::kAvg);
  EXPECT_EQ(out.str().size(), 93);

  out.str("");
  out << jit::sgd_attr_t(1, 2, 3, 4, 5);
  EXPECT_EQ(out.str().size(), 81);

  out.str("");
  out << jit::matmul_attr_t(1, 2, 3);
  EXPECT_EQ(out.str().size(), 14);
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
// test keys
TEST(JITKernel_key, int) {
  EXPECT_TRUE(jit::JitCodeKey<int>(2) == jit::JitCodeKey<int>(2));
  EXPECT_TRUE(jit::JitCodeKey<int>(2) == jit::JitCodeKey<int64_t>(2));
  EXPECT_TRUE(jit::JitCodeKey<int>(2) != jit::JitCodeKey<int>(3));
}

TEST(JITKernel_key, gru) {
  jit::gru_attr_t attr1(8, jit::kVSigmoid, jit::kVTanh);
  jit::gru_attr_t attr2(8, jit::kVSigmoid, jit::kVTanh);
  jit::gru_attr_t attr3(9, jit::kVSigmoid, jit::kVTanh);
  jit::gru_attr_t attr4(9, jit::kVSigmoid, jit::kVIdentity);
  jit::gru_attr_t attr5(9, jit::kVTanh, jit::kVIdentity);

  auto key1 = jit::JitCodeKey<jit::gru_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::gru_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::gru_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::gru_attr_t>(attr4);
  auto key5 = jit::JitCodeKey<jit::gru_attr_t>(attr5);

  EXPECT_TRUE(key1 == key2);
  EXPECT_TRUE(key2 != key3);
  EXPECT_TRUE(key2 != key4);
  EXPECT_TRUE(key2 != key5);
  EXPECT_TRUE(key3 != key4);
  EXPECT_TRUE(key3 != key5);
  EXPECT_TRUE(key4 != key5);
}

TEST(JITKernel_key, lstm) {
  jit::lstm_attr_t attr1(8, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr2(8, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr3(9, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr4(9, jit::kVRelu, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr5(9, jit::kVRelu, jit::kVSigmoid, jit::kVTanh, true);
  jit::lstm_attr_t attr6(9, jit::kVRelu, jit::kVSigmoid, jit::kVTanh, true);

  auto key1 = jit::JitCodeKey<jit::lstm_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::lstm_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::lstm_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::lstm_attr_t>(attr4);
  auto key5 = jit::JitCodeKey<jit::lstm_attr_t>(attr5);
  auto key6 = jit::JitCodeKey<jit::lstm_attr_t>(attr6);

  EXPECT_TRUE(key1 == key2);
  EXPECT_TRUE(key2 != key3);
  EXPECT_TRUE(key2 != key4);
  EXPECT_TRUE(key2 != key5);
  EXPECT_TRUE(key3 != key4);
  EXPECT_TRUE(key3 != key5);
  EXPECT_TRUE(key4 != key5);
  EXPECT_TRUE(key5 == key6);
}

TEST(JITKernel_key, seq_pool) {
  jit::seq_pool_attr_t attr1(2, jit::SeqPoolType::kSum, 1);
  jit::seq_pool_attr_t attr2(2, jit::SeqPoolType::kSum, 3);
  jit::seq_pool_attr_t attr3(3, jit::SeqPoolType::kSum, 3);
  jit::seq_pool_attr_t attr4(3, jit::SeqPoolType::kAvg, 3);

  auto key1 = jit::JitCodeKey<jit::seq_pool_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::seq_pool_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::seq_pool_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::seq_pool_attr_t>(attr4);

  EXPECT_TRUE(key1 == key2);
  EXPECT_TRUE(key2 != key3);
  EXPECT_TRUE(key2 != key4);
  EXPECT_TRUE(key3 != key4);
}

TEST(JITKernel_key, matmul) {
  jit::matmul_attr_t attr1(1, 2, 3);
  jit::matmul_attr_t attr2(1, 2, 3);
  jit::matmul_attr_t attr3(1, 3, 3);
  jit::matmul_attr_t attr4(2, 3, 4);

  auto key1 = jit::JitCodeKey<jit::matmul_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::matmul_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::matmul_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::matmul_attr_t>(attr4);

  EXPECT_TRUE(key1 == key2);
  EXPECT_TRUE(key2 != key3);
  EXPECT_TRUE(key2 != key4);
  EXPECT_TRUE(key3 != key4);
}

TEST(JITKernel_key, emb_seq_pool) {
  jit::emb_seq_pool_attr_t attr1(1, 2, 3, 4, 5, jit::SeqPoolType::kSum);
  jit::emb_seq_pool_attr_t attr2(1, 2, 3, 4, 5, jit::SeqPoolType::kSum);
  jit::emb_seq_pool_attr_t attr3(10, 2, 9, 8, 7, jit::SeqPoolType::kAvg);
  jit::emb_seq_pool_attr_t attr4(10, 3, 9, 8, 7, jit::SeqPoolType::kSum);
  jit::emb_seq_pool_attr_t attr5(1, 6, 3, 4, 5, jit::SeqPoolType::kSum);

  auto key1 = jit::JitCodeKey<jit::emb_seq_pool_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::emb_seq_pool_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::emb_seq_pool_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::emb_seq_pool_attr_t>(attr4);
  auto key5 = jit::JitCodeKey<jit::emb_seq_pool_attr_t>(attr5);

  EXPECT_TRUE(key1 == key2);
  EXPECT_TRUE(key2 == key3);
  EXPECT_TRUE(key2 != key4);
  EXPECT_TRUE(key2 != key5);
  EXPECT_TRUE(key4 != key5);
}

TEST(JITKernel_key, sgd) {
  jit::sgd_attr_t attr1(1, 2, 3, 4, 5);
  jit::sgd_attr_t attr2(1, 2, 3, 4, 5);
  jit::sgd_attr_t attr3(9, 8, 7, 4, 6);
  jit::sgd_attr_t attr4(1, 2, 3, 6, 5);
  jit::sgd_attr_t attr5(10, 9, 8, 7, 6);

  auto key1 = jit::JitCodeKey<jit::sgd_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::sgd_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::sgd_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::sgd_attr_t>(attr4);
  auto key5 = jit::JitCodeKey<jit::sgd_attr_t>(attr5);

  EXPECT_TRUE(key1 == key2);
  EXPECT_TRUE(key2 == key3);
  EXPECT_TRUE(key3 != key4);
  EXPECT_TRUE(key3 != key5);
  EXPECT_TRUE(key4 != key5);
}

1311
// test kernerls
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
#define TestKernelVMul TestKernelXYZN
#define TestKernelVAdd TestKernelXYZN
#define TestKernelVAddRelu TestKernelXYZN
#define TestKernelVSub TestKernelXYZN

#define TestKernelVScal TestKernelAXYN
#define TestKernelVAddBias TestKernelAXYN

#define TestKernelVRelu TestKernelXYN
#define TestKernelVIdentity TestKernelXYN
#define TestKernelVSquare TestKernelXYN
#define TestKernelVExp TestKernelXYN
#define TestKernelVSigmoid TestKernelXYN
#define TestKernelVTanh TestKernelXYN
#define TestKernelVCopy TestKernelXYN

#define TestKernelHMax TestKernelXRN
#define TestKernelHSum TestKernelXRN

#define TestKernelLSTMCtHt TestKernelLSTM
#define TestKernelLSTMC1H1 TestKernelLSTM

#define TestKernelGRUH1 TestKernelGRU
#define TestKernelGRUHtPart1 TestKernelGRU
#define TestKernelGRUHtPart2 TestKernelGRU

#define TEST_CPU_KERNEL(kernel_type)                                      \
  TEST(JITKernel, kernel_type) {                                          \
    TestKernel##kernel_type<jit::kernel_type##Tuple<float>, CPUPlace>();  \
    TestKernel##kernel_type<jit::kernel_type##Tuple<double>, CPUPlace>(); \
T
tensor-tang 已提交
1342
  }
T
tensor-tang 已提交
1343

1344 1345 1346 1347
TEST_CPU_KERNEL(VMul);
TEST_CPU_KERNEL(VAdd);
TEST_CPU_KERNEL(VAddRelu);
TEST_CPU_KERNEL(VSub);
T
tensor-tang 已提交
1348

1349 1350
TEST_CPU_KERNEL(VScal);
TEST_CPU_KERNEL(VAddBias);
T
tensor-tang 已提交
1351

1352 1353 1354 1355 1356 1357 1358
TEST_CPU_KERNEL(VRelu);
TEST_CPU_KERNEL(VIdentity);
TEST_CPU_KERNEL(VSquare);
TEST_CPU_KERNEL(VExp);
TEST_CPU_KERNEL(VSigmoid);
TEST_CPU_KERNEL(VTanh);
TEST_CPU_KERNEL(VCopy);
T
tensor-tang 已提交
1359

1360 1361
TEST_CPU_KERNEL(HMax);
TEST_CPU_KERNEL(HSum);
T
tensor-tang 已提交
1362

1363 1364
TEST_CPU_KERNEL(LSTMCtHt);
TEST_CPU_KERNEL(LSTMC1H1);
T
tensor-tang 已提交
1365

1366 1367 1368
TEST_CPU_KERNEL(GRUH1);
TEST_CPU_KERNEL(GRUHtPart1);
TEST_CPU_KERNEL(GRUHtPart2);
1369

1370 1371 1372
TEST_CPU_KERNEL(NCHW16CMulNC);
TEST_CPU_KERNEL(LayerNorm);
TEST_CPU_KERNEL(CRFDecoding);
1373

1374 1375 1376 1377 1378 1379
TEST_CPU_KERNEL(SeqPool);
TEST_CPU_KERNEL(EmbSeqPool);
TEST_CPU_KERNEL(MatMul);
TEST_CPU_KERNEL(Softmax);
TEST_CPU_KERNEL(Sgd);
TEST_CPU_KERNEL(VBroadcast);
D
dengkaipeng 已提交
1380 1381 1382

TEST_CPU_KERNEL(StrideASum);
TEST_CPU_KERNEL(StrideScal);