test.cc 3.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <cstring>  // for memcpy
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33
#include "paddle/fluid/platform/port.h"

constexpr int repeat = 20000;

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

T
tensor-tang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
  if (std::is_floating_point<T>::value) {
    for (int i = 0; i < n; ++i) {
      EXPECT_NEAR(target[i], refer[i], 1e-3);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      EXPECT_EQ(target[i], refer[i]);
    }
  }
}

TEST(JitKernel, vmul) {
  using T = float;
  using PlaceType = paddle::platform::CPUPlace;

T
tensor-tang 已提交
62
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
63 64
  // TODO(TJ): test more vector size
  for (int d = 1; d < 30; ++d) {
T
tensor-tang 已提交
65 66 67 68
    auto ref = jit::GetRefer<jit::vmul, T, jit::VMulTuples<T>::func_type,
                             jit::VMulTuples<T>::attr_type>();
    auto tgt = jit::Get<jit::vmul, T, jit::VMulTuples<T>::func_type,
                        jit::VMulTuples<T>::attr_type, PlaceType>(d);
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    EXPECT_TRUE(ref != nullptr);
    EXPECT_TRUE(tgt != nullptr);

    std::vector<T> x(d), y(d);
    std::vector<T> zref(d), ztgt(d);
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();

    tgt(x_data, y_data, ztgt_data, d);
    ref(x_data, y_data, zref_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);

    // test inplace x
    std::copy(x.begin(), x.end(), zref.begin());
    std::copy(x.begin(), x.end(), ztgt.begin());
    tgt(ztgt_data, y_data, ztgt_data, d);
    ref(zref_data, y_data, zref_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);

    // test inplace y
    std::copy(y.begin(), y.end(), zref.begin());
    std::copy(y.begin(), y.end(), ztgt.begin());
    tgt(x_data, ztgt_data, ztgt_data, d);
    ref(x_data, zref_data, zref_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
  }
}
T
tensor-tang 已提交
100 101

TEST(JitKernel, pool) {}